
 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-10

An Experimental Data Flow Analysis Annotated-Diagram-based event

analysis

Hazaruddin Harun
1
, Nurnasran Puteh

2

1,2
School of Computing, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

Abstract: With the adoption of Unified Modeling Language (UML) as the de-facto standard for modeling software

systems, several research studies discussed the need for inputs for test automation to use models of systems under

evaluation. Event diagrams have recently been used as a framework for test cases to be derived. Current studies

concentrate on the study of event control flow. Nonetheless, it is quite easy to analyze the control flow between activities

and such analysis alone is inadequate. This research proposes a test case generation methodology that complements a

data flow information operation diagram. We performed an observational study into well-known structures in research

literature to explore the potential benefits of this methodology. The experimental results were analyzed and compared as

an alternative approach to the effectiveness and efficiency of fault detection with a state-of - the-art test suite generation

tool. Overall, the results show that the proposed technique outperforms the alternative approach by detecting an average

of 27.3 percent more errors. The proposed technique, in particular, yielded the best results in detecting errors related to

arithmetic operations or parts used in our context for calculation.

Keywords: model-based testing; diagram-based testing of activity; data flow-annotated diagram of activity; data flow

information

1. INTRODUCTION

Testing is an important part of the effort to develop

software. Test design is the most demanding and time-

consuming part of testing in particular. Testers need to

develop cases to prove the presence of defects in order to

test software. The key factor that reveals the extent of

defects is the design of appropriate test cases. In addition

to the adaptation of Unified Modeling Language (UML)

diagrams as the de-facto standard for modeling software

systems, the use of system models under test (SUT) as

inputs for test models [1-3] has become necessary. The

research community has therefore shifted its focus on

designing and developing test cases based on various

structural and behavioral models. In general, researchers

emphasized the design of behavioral model-based test

cases using activity diagrams (ADs) [4-15], sequence

diagrams, state machine diagrams [3,16], and a

combination of two or more diagram types [17]. To this

end, the AD was considered an important artifact of

layout for the identification of test cases [9]. Today, the

main focus of existing studies is test automation focused

on an AD study to obtain different types of tests of

information on flow control. However, it is quite simple

and straightforward to examine the control flow between

design elements [18, 19]. Testing based solely on the

sequence of activities in an AD is probably not enough to

detect faults. It is therefore an important ongoing issue to

find ways to improve the test quality based on design

elements such as an AD. In addition to automatically

analyzing its control flow, an activity represents system

behavior to ensure its accuracy. In terms of data flow

information, these activities also need further analysis.

ADs are used to model process behaviors and how these

behaviors interact by specifying the sequence of actions

between them. Actions are considered to be the main

activity capabilities and are central to the activity data

flow [2, 17]. Empirical literature studies indicate that AD

is among behavioral models the most comprehensive [20]

and suitable development artifact describing the control

flow between artifacts in an object-oriented system [9]. In

addition, an AD is considered to be the best intermediate

model between the specification of the program and the

code which provides a rich source of data flow analysis

details. Thus, for other purposes such as automatic code

generation [21-23], ADs are further investigated. We

performed an experimental investigation into an AD-

based test case generation technique using data flow

information (DFI) in this study. This analysis expands our

earlier work [24] presented at a conference. To simplify

the requirement for data flow coverage (DFC) the AD of

a SUT is annotated with DFI. The inclusion of DFI,

instead of the AD of a SUT without DFI, enables the

analysis of the control flow data, allows the identification

of pairs of object variables definition-use through

activities that help the generation of highly improved test

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-11

cases. For example, it can be used to identify

irregularities in the data flow that can also validate the

template itself before extracting and executing test cases

and deficiencies which need more accurate oracles such

as calculation. It is mapped to an intermediate template, a

so-called data flow graph (DFG), after annotating the AD

with DFI, which is comparatively simple and more

suitable for automated manipulation. Subsequently, the

test paths are generated by DFG using specific DFC

criteria in a depth-first search (DFS) manner, and the

concrete tests are performed using the given oracles and

input values. Ultimately, against predicted outcomes, the

findings are presented and evaluated. The experimental

investigation was conducted with the commonly used

software systems to compare and evaluate new and

existing literature testing tools and techniques. A

comparative experimental investigation analysis using

two techniques was conducted, namely data flow

annotated activity diagram-based testing (DFAAD) and a

so-called state-of - the-art test suites generation tool

(EvoSuite) [25]. The impact of the proposed approach on

effectiveness and efficiency in detecting faults has been

discussed. Effectiveness in this analysis means revealing

the maximum number of faults without considering the

number of tests performed, whereas reliability means

revealing the maximum number of faults with the

minimum number of tests performed. The experimental

investigation was conducted to further verify the

arguments regarding efficacy and efficiency in detecting

faults. Therefore, we aimed to address the general

research question (RQ): how does the proposed DFAAD-

based testing methodology perform in terms of the

effectiveness of fault detection compared to a well-

practiced alternative? Our general RQ was further broken

down into sub-questions in Section 4. The rest of the

analysis is structured as follows: Section 2 addresses

related work and contrasts existing strategies for the

generation of test cases based on AD. Section 3 provides

the main approach including the basic concepts and

meanings, examples to explain the overall concepts, a

simple description to define and annotate DFI, as well as

steps to separate the DFG from the DFAAD. Section 4

offers an observational analysis to examine the potential

benefits of this method from an alternative research

technique. Sections 5 and 6, respectively, address validity

findings and risks. Finally, the conclusion and possible

directions for the study are given in Section 7.

2. RELATED WORK

This section addresses related work and offers a simple

comparison of existing literature studies involving

techniques for producing AD-based test cases. ADs are

used to model the SUT's complex behavior and are

commonly used for testing support. These models are

very useful and offer a significant testing opportunity as

they accurately describe the SUT's functionality in a

manner that can be easily manipulated by automation

[26]. As well as the internal logic of a complex network,

ADs can be used to model a system from a high-level

business process to each individual unit of the system.

Overall, there are a range of benefits associated with AD-

based research, such as early generation of test cases

during software design, good reporting of test cases, early

detection of specification defects, and cost and effort

reduction. There are several literature studies with

different strategies that used ADs for the creation of test

cases. An AD-based test case generation approach has

been introduced [14] using UML 2.0 with a use case

context based on a high-level abstraction AD. The study's

aim is to identify lower synchronization and additional

loop failures following guidelines for coverage of the

activity path. An AD-based test method

[11] builds trees for condition classification by collecting

information on control flow from decision points and con

ditions for guarding. The technique [10] known as

automated test generation, by interpreting the AD, takes

into account both the control flow and the information

stream. By gathering data members to provide input for a

new symbolic model checker (NUSMV), the analysis

extracts and analyzes the structure of the AD.

Nonetheless, the mapping of data members to the

NUSMV input [27] and their contribution to the

generation of test cases is not clear. The AD-based test

case generation technique [5] generates test cases directly

from the AD. The possible values of the input / output

parameters were generated using a category-partition

method to identify any differences between

implementation and design. Similar to our research, this

method creates test cases that can be used to test the

system at code level. However, the technique still focuses

on the operations / method sequences control flow in an

AD and applies the criteria for the basic path coverage. In

our study, we annotated the SUT's AD explicitly with

data flow information and the criteria used to cover data

flow. A rule-based approach [4] was presented to derive a

combinatorial test design model from ADs in order to

improve test effectiveness. The main idea is to provide

rules with their corresponding values and constraints to

identify the parameters by parsing the AD. Table 1

provides a simple comparison of the various perspectives,

such as the technique used, the existing work, for further

information on AD-based testing. The current studies are

compared on the basis of our perception based on the

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-12

research objective, the intermediate model used to

generate test cases, and the coverage criteria used, as well

as issues related to these techniques.

Table 1. A comparison of activity diagram-based test case generation techniques

Study Techniques Objective Intermediate Coverage

criteria

Related issues

[14]

UML 2.0

modeling

capabilities with

use case scope

Detecting

synchronization

and loop faults

Active Graph Active path High level of

abstraction, missing

details of individual

activity

[11]

Condition

classification tree

Test automation,

generate tests

early duration

development

Condition

classification tree

Decision point Difficulties in

identifying all feasible

paths with complex

control flow and their

nested

combination(loops)

[5]

Gray box Test automation,

find inconsistency

between

implementation

and design

None Basic path Test cases are

generated based on

assumption that

concurrent activity

stated will not access

the same object and

only execute

asynchronously

[6]

XML-based Test automation,

save time and

effor

Activity

dependency

table(ADT)

Branch,

predicate basic

path

Lacking validation of

fault detection

capability with

reduced set of

generated test paths

[4]

Combinational

test design model

Test automation,

reduce effort,

improve

effectiveness

 CTDM model Parameter- value Difficulties on

identifying constrains

from linking the

parameters and values

[7,8]

I/O explicit

activity diagram

Minimize number

of TC

Directed Graph All paths Generalizability and

vagueness on

identification of input/

output activity,

domain specific

[9]

Classificaton of

control constructs

Identification of

all possible

scenarios

Intermediatee

testable model

Selection loop

adequacy

Generating and

running too many test

cases to cover every

possible path is not

feasible as it causes

path explosion and

reduces tes efficiency

[10]

Automated test

generation using

model checking

Test automation,

reduce time and

validation effort

Formal

model(NUSMV

input)

Activity,

Transition Key_

path

Leading to state

explosion, ambiguity

on using data

members for test

generation

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-13

[12]

Automatically

generate random

TC

Test automaton,

minimize number

of TC consistency

checking

None Activity

transition, simple

path

Randomness limits

the reliability of the

generated test cases

[13]

Construct activity

dependency table

To achieve all

path coverage.

Improve fault

detection

Activity convert

[8]

All paths Manually generating

AC grammar and

feasible paths with

complex AD

including loops,

detecting only design

errors

The purpose of the comparative analysis is to provide a

general overview of the current AD-based testing status.

Although several related issues of the current AD-based

testing techniques have been highlighted, we have not

addressed every issue. The findings presented in Table 1

suggest that current methods focused primarily on test

automation centered on the study of different control

information objects in an AD. However, it is not enough

to examine only the control flow between the activities to

test the entire SUT. Though test automation based on the

analysis of control flow information is a good idea to

boost test output, it is more important to test reliability. In

other words, the test cases generated should be able to

detect errors. Accordingly, an ongoing challenge is

improved detection capability of conventional AD-based

testing. Through annotating ADs with DFI, the

experimental investigation in this study strengthened the

exposure criterion for increased ability to detect failures.

To supplement traditional control flow-based testing

techniques [28, 29], data flow-based testing techniques

were initially introduced. Several research have examined

the integration of DFI into a model-based test

environment, using UML class diagrams [30] and state

machine diagrams [19, 31, 32] for example. However,

class diagrams are limited to the dynamic behavior of the

static view of SUT and miss. State machine diagrams are

also limited to representing the interaction of complex

objects and do not represent all of the SUT's properties

[33]. This thesis explores how annotating DFI can

improve the ability to identify faults in the sense of an

AD as opposed to existing studies.

3. DATA FLOW ANNOTATED

ACTIVITYDIAGRAM-BASED TESTING

We define the basic concepts and meanings used in this

analysis in this chapter and provide an overview of

DFAAD-based testing. We also describe in more detail

each of the activities, such as the circumstances to

identify and annotate DFI and the steps to extract a DFG

based on an annotated AD, along with a running example.

Basic Concepts and Definitions

Most of the definitions and terms used in this study are

derived from standard textbook testing software [18, 34],

existing documentation, and slightly modified research

studies [2, 9,10].

Definition 1. Data flow-annotated activity diagram

DFAAD is an extension of the original activity diagram

representing the sequence of actions that explicitly mark

the flow of data across activities. A DFAAD can be

formally described as a graph, G = (A, E, C) where:

A is a collection of actions / activities including A0 and

Af, in which each A excluding A0 and Af is either

annotated with d, u, cu or a combination thereof

following the name of the stereotype notation data

members in which d is specified, U stands for use, and cu

stands for calculation use, and A0 represents initial

activity, where A0 ⊆ A, and A0 ≠ Ø, and Af is a set of

final activities, where Af ⊆ A and A and Af ≠ Ø.

E refers to a set of edges in which E is a subset of A x A

C = Dn U Jn U Fn U Mn is a set of control nodes, so Dn is a

set of decision nodes, Jn is a set of join nodes, Fn is a set

of fork nodes, and Mn is a set of fusion nodes. Dn is close

to p-use, which stands for predicated use in terms of data

flow.

Both the AD and the data flow graph that contains a

single initial node are restricted.

Definition 2. Data flow graph A DFG is a simplified

representation of a formally definable annotated activity

diagram (AAD) as:

a set N of nodes, where each node is explicitly marked

with DFId, u, cu, and p-use

a set N0 of initial nodes, where N0 ⊆ N and N0 ≠ Ø

a set Nf of final nodes, where Nf ⊆ N and Nf ≠ Ø

a set E of edges, where E is a subset of N × N

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-14

Definition 3. All d-use path coverage (ADUPC) TR

includes each direction d in S [18] for each array of def-

pairs S = d-use (ni, nj, v). TR stands for test criteria, d-use

for description use, and ni and nj, respectively, represent

nodes I and j.

Overview of DFAAD-based Testing

Each paragraph provides an overview of DFAAD-based

research and a detailed description of the main activities.

According to [1], a standard MBT process involves three

main tasks: developing a functional test model to reflect

the SUT's expected operational behaviour, deciding

requirements for test generation to limit the number of

tests produced, and generating fully automated tests. We

followed a medical MBT in this study in which the SUT's

AD was established on a test basis. Compared to an MBT

approach, there are three main activities in the DFAAD-

based research, namely behavioral test template

development, test generation, and test execution. The DFI

was established and annotated within the SUT's AD to

promote DFC requirements. For simplification and

further automation, the AAD was mapped into an

intermediate model known as the DFG.

Figure 1. DFAAD-based testing overview

An intermediate test model used to create test paths based

on existing graph traversal algorithms such as DFS or

BFS was the deliverable of this operation. Testers need to

establish the test generation requirements (e.g. dupath

coverage) to limit the number of test cases created in

order to generate the tests. Next, testers provided oracles

and input values to adapt the test cases generated. The

generated tests were finally carried out and the results of

the tests were reported. Figure provides an overview of

DFAAD-based testing. 1.

Identification and Annotation of DFI

This paragraph discusses the situations in which an AD

will classify and annotate the DFI. The AD shows the

control flows between operations, and ADs can model a

system from a high-level business process to

communication and state changes between activities,

return values, and computations. They depict among

activities the sequence of acts. For any significant

capabilities, actions are needed and are essential to an

AD's data flow aspect [2]. The sequence of acts between

activities provides useful communications data such as

the recipient and the receiver entity, state changes,

parameter exchange, return values, and conditions of

guard. Other supporting references also include

specification documents, under particular the application

case specification which is the basis of an AD. The

measures and situations in which the DFI can be

identified and annotated with the AD are as follows:

1) Identification of data members participating in an

AD: first, annotation of an AD with DFI requires

identification of the data members participating in the

AD. There are several ways in which a data member can

be identified through activities as mentioned above.

Using the information in the guard condition is the easiest

way to identify a data member. In addition, the input or

output parameters specified in the Action Pin help to

identify the members of the data.

Detection of DU pairs across activities: After the

participating data members in an AD are identified, there

are different situations in which the DU pairs of data

members can be detected. The descriptive name and types

of the action depict an action behavior. Thus, one

approach is to analyze each action's encapsulated

behavior. In addition, the input or output parameters

specified in the Action Pin help to identify the members

of the data. Detection of DU pairs across activities: There

are different situations where the DU pairs of data

members can be detected after the participating data

members are identified in an AD.

2) The descriptive name and forms of the action

represent an activity conduct. Thus, one approach is to

analyze each action's encapsulated behavior. It is

conceivable that the different DU pairs of data members

across activities can be identified in the following

situations: (a) A description can occur in an A in the

following situations: in an Executable Node, which is the

Activity Node origin, which outputs the variable objects

(defines by input). In an executable Node (defined by

assignment) in which the variable objects are initialized.

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-15

(b) Use in A may occur in the following situations: in an

Executable Node invoked by other input data behaviors

and operations, supply or return the information to other

activities by means of outgoing edges without alteration.

The data is obtained from the object of the recipient and

transferred or returned to the object of the receiver

without alteration. (C) In A, c-use may occur under the

following conditions: in an Executable Node performing

a subordinate behavior (e.g. arithmetic computation,

object contents manipulation). (D) In A, p-use may occur

in the following situations: in an AD node with Dn and a

guard condition, C nodes are excluded without conditions

of guard (e.g. Jn, Fn, Mn). DFI's annotation in an AD.

3) This information is annotated with the AD using

assumptions, for instance, if a variable is specified in a

particular activity it is interpreted as < < < d (variable

name) > > after the data members are recognized and

their DU pairs are detected. You can find additional

information in the running instance and the chapter on

case study.

Extraction of DFG

The AD syntax can be easily correlated with the DFG

syntax with reference to the UML documentation and

current studies. A DFG routinely encapsulates AD for

further automation [14]. We can either extract test cases

directly from an AD or convert them to an intermediate

model DFG and generate test cases through the graph.

We prefer to convert the AD into a DFG for

simplification purposes, which simplifies the concepts by

encapsulating different syntax of an AD into DFG nodes.

The DU pairs annotated in an AD are labelled with the

DFG's corresponding nodes. Since both the AD and the

DFG are directed graphs, it is straightforward to map the

annotated AD into the DFG and essentially involves the

following steps:

The operation set A is mapped to the DFG node set N (A

Activity → N node) and the occurrence of d-use data is

included with the respective nodes.

→An AD's A0 node is connected to a DFG's N0 node (A0

N0)

An AD's Af node is mapped to a DFG's Nf (Af → Nf)

An AD's Cn nodes are mapped to a DFG's N (Cn

N)

An AD's edge E is mapped to a DFG's edge E

Graph theory is a common concept of software testing

which provides testers with a major simplification

mechanism. An advantage of converting AD to DFG is

that the structure of the DFG is more simplified. It is

therefore relatively easy to generate test cases based on a

DFG. Also, in the case of a DFG, there are already many

algorithms to generate tests to traverse the graph.

Generation of Test Paths

The test paths are generated on the basis of the DFG

intermediate test model. It is necessary to determine

appropriate test coverage criteria (TCC) in order to limit

the number of tests generated. The most commonly

adopted coverage criteria include branch coverage,

coverage of decisions, simple path coverage, and

coverage of statements that require the test cases to cover

and execute each branch, decision, statement, or path. We

are not, however, able to discover most common mistakes

[28].

The DFC is therefore added to complement the

requirements for the control flow coverage, and the most

well-known is the coverage of the DU road. We applied

ADUPC to the DFC requirements in our approach. We

are not, however, able to discover most common mistakes

[28]. The basic concepts and definitions are set out in

Section III-1, and some examples are given in Section III-

3. A graph traversal algorithm (GTA) is required after

determining the TCC to extract the abstract tests based on

the selected criteria. DFS and breadth-first search (BFS)

are the most common graph traversal algorithms. We

crossed the DFG in a DFS way in our situation. By

providing additional information such as oracles and

input values, these paths are used to design concrete tests

after generating the relevant test paths.

Design Test Cases

After generating and obtaining the abstract tests, test

oracles and input values are needed to transform the

abstract tests into concrete tests. This activity is an

important aspect of the activity of test generation, which

needs special attention. There are currently many

literature guidelines and oracle testing strategies. Several

oracle techniques have been documented for model-based

testing and their ability to detect faults has been

investigated [35]. Although our main concern is not the

test oracle strategy, we have followed existing strategies

and guidelines for designing the concrete tests.

Execution of Tests

Test cases were conducted against the SUT as the final

operation, and the test results were published. There are

currently several test output systems that can be used to

conduct planned test cases. We used J Unit as an

execution tool in this study to facilitate comparative

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-16

analysis against the alternative approach, but any other

tools can be used to perform the generated executable

tests.

Figure 2. (a) Customer billing service AD; (b) Customer billing service DFAAD

4. RUNNING EXAMPLES

We provide two running examples in this section, using a

customer billing service application and a triangle

problem, for ease of understanding. The first example

illustrates the data flow description in an AD and the

latter also demonstrates DFG generation and test cases.

Example 1

We used a modified version of a cellular service customer

billing software as a first running example [36]. The

software measures billing on the basis of the amount of

use of the customer and provides three different types of

discount. The following is a basic case specification

definition for the use of "Calculate Billing Service":

Normal flows

The application receives the amount of use from the

system actor

If the use reaches zero, the bill will be determined based

on the type of discount.

A discount type A (50 cents for each additional minute) is

applied if the consumption is between 100 and 200.

If the use exceeds 200, a discount type B (10 cents for

each additional minute) will be applied.

Alternate/exceptional flows

1 If the use is below or equal to zero, the bill shall be zero

1 If the bill reaches 100, a Type C discount (10%

discount from the total amount) is applied.

The definition of use case is the basis for the creation of

an AD. It is also considered a rich knowledge source to

identify DFI in an AD. Figure shows the original AD for

billing operation. 2(a), and Figure displays the

corresponding AAD. 2(b). The AD is the series of actions

needed to calculate the amount of the billing. Acts are

known to be the main activity capabilities and are central

to the aspects of information flow [2]. We can use Action

Pins to represent transmitted data values to and from an

Action. We use the three previously defined measures to

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-17

annotate the AD with DFI. The first step is to identify

participating data members through activities using the

information in the conditions of the guard and the

parameters put in / out specified in the pins of action. In

the picture. 2(b), by examining the action pins and

conditions of the guard, a total of two data members

(Usage, Bill) were defined. Subsequently, through

examining the encapsulated actions of Activities, we

detected the DU pairs of each identified data member

through activities. The AD was annotated in the final step

with the established DU pairs. Table 2 shows the DU

pairs associated with the information members in a

simple format through different activities for better

understanding. Table 2 also provides abstract and

concrete comparisons of input values and predicted

outputs. In this case, only dummy values used for

demonstration purposes are the input and expected values

for Table 2. The abstract test cases are collected directly

through the DFAAD manually. Table 2 reveals that the

Bill parameter appears as define-definine, which is a

double description known as a possible error. Detection

in the design of such anomalies helps to prevent different

code anomalies.

Table 2. du-pairs of data members across activities, the abstract and concrete tests

Variable

Activity Nodes

Calculate

Bill

Decisio

n (node
1)

Basic

Amou
nt

Decisi

on
(node

2)

Discoun

t Type A

Disco

unt
Type

B

Decis

ion
(node

3)

Discount

Type c

Merge

node

Submit

Bill

Usage Bill d

d

pu

d

pu Cu

Cu, d

Cu

Cu, d

pu

Cu, d

u

Abstract Tests Concrete tests

Input
Value

Expecte
d output

Usage Calculate Bill → Decision node 1→ Decision node 2 → Discount Type

A

199 89.5

du-

pairs

Calculate Bill → Decision node 1 → Decision node 2 → Discount Type

B

900 99.0

Bill Apply basic Amount → Discount Type A 150 140

du

pairs

Apply basic Amount → Discount Type B 230 110

 Discount type A → Submit bill 120 120

 Discount Type B → Decision node 3 → Submit bill 600 400

 Discount Type B → Decision → Discount Type C → Submit bill 200 120

 Discount Type C → Submit bill 300 150

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-18

Example 2

This example shows the annotation of the data flow, the

conversion of DFAAD to DFG using triangle problem.

Specification of the triangle problem: three positive total

numbers are taken as input by the triangle problem.

Classify it as an equilateral triangle if all three sides have

the same length;

When two sides have the same size, classify it as a

triangle of isosceles;

If a right angle is an angle, mark it as a right angle

triangle;

Classify it as a scalene triangle if all sides have different

lengths and no right angles;

 (a) (b)

Figure. 3 a) DFAAD triangle problem, b) DFG triangle problem

Table. 3 Concrete analysis and reliability findings for the triangle problem

Coverage TC

ID

Test Paths Input Values Expected

outputs

Result

s1 s2 s3

ADUPC TC1 1-2-3- pu(s1,s2, s3) 20 0 10 Impossible P

 TC2 1-2-6-7u (s1, s2, s3) 40 50 20 40,50,20 P

 TC3 1-2-6-8cu (s1, s2, s3) 60 70 80 210 P

 60 0 80 -1 P

 TC4 1-2-6-8-9 cu(s1,

s2, s3)

40 60 60 1131137.085 F

 TC5 1-2-6-10-11-

12pu(s1, s2, s3)

200 200 200 Equilateral P

 TC6 1-2-6-11-14-

5pu(s1,s2,s3)

13 55 55 Isosceles F

 TC7 1-2-6-10-11-12-

13-5pu(s1, s2,s3)

12 21 33 Impossible F

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-19

If there is no triangle on the given sides, mark it as

impossible;

Calculate the perimeter and the area of the triangle

The triangle problem's DFAAD is shown in Fig. 3(a) and

the corresponding DFAAD information flow diagram is

shown in Fig. 3(b) that’s wrong. The abstract test cases

generated in Fig from the DFG. 3(b) is shown in Table 3

on the left.

5. EXPERIMENTAL DESCRIPTION

The paragraph describes the experiment conducted to test

the proposed methodology, following existing guidelines

for software engineering empirical research and

experimentation [37-39]. Section IV-A provides the

concept and scope of the experiment. Section IV-B

explains the experimental procedure and design, and the

experimental results are described in Section IV-C.

Experimental Definition and Context

The experimental investigation was conducted with an

alternative approach to contrast and assess the existing

DFAAD-based research methodology. Therefore, the

experiment concentrated on testing the possible efficacy

of the proposed technique to expose faults with respect to

the formulated research questions compared to an

established well-practiced test case generation technique.

We therefore carried out our experimental research

involving three subject systems, namely the Cruise

Control System, the Elevator System, and the Coffee

Maker.

We were chosen manually based on the following

parameters to ensure that the experimental samples were

appropriate (e.g. in terms of size and complexity) and

suitable for our study. Large and logically complex

systems with at least four classes, 60–80 branches, and

150–170 non-comment statements Systems that include

all the necessary objects available (e.g. category diagrams

and a high-level explanation of the functionalities of the

system) to model the behavior of the system. Systems that

are not excessively large or complex, or inappropriate for

alternative approaches to generate tests, which prevent

experimentation within the time limit. The complete

description of the three experimental topic structures is

listed in Table 4. The Software-Artifact Infrastructure

Repository (SIR) for Elevator and Cruise Control

Systems (https:/sir.csc.ncsu. edu / content / sir.php)[40]

and the coffee maker's NCSU website

(https:/www.ncsu.edu/) provide all the necessary objects,

including the system source code. The experiments deal

with the following RQs and sub-RQs that extend our

general RQ provided in Section I. RQ1.1: Compared to

an alternative approach, how does the proposed DFAAD-

based test case generation technique perform in terms of

overall failure detection efficiency?

RQ1.2: What is the difference between the proposed

DFAAD-based test case generation technique and the

alternative approach to the detected type of faults?

 RQ2: What is the relative efficiency, measured by the

number of detected faults and the number of generated

test cases?

Table. 4 Description of experimental subject systems

System #LOC# #Classes Mutants

Min Mean Max

Cruise control 358 4 15 27.25 48

Elevator 581 8 2 30.9 111

Coffee maker 393 4 24 39 68

RQ1.1 explores whether the proposed methodology can

be comparable to a well-practiced test suite generation

method like EvoSuite in terms of identification of faults.

RQ1.2 further explores whether the proposed strategy

was more or less successful than the alternative approach

in detecting distinct faults. For example, a positive

response to this query would imply the detect ability with

the DFAAD-based approach of certain types of fault,

which is not observable with the alternative approach.

RQ2 investigates whether the test suites produced by one

technique may detect additional faults with fewer tests

compared to others.

Variable selection

For all RQs, the independent variable is the type of

technique used as the basis for the generation of test suite

(e.g. DFAAD or alternative technique). The dependent

variables are correlated with fault detection efficacy and

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-20

efficiencies, such as killed or survived mutants, and

different types of fault.

Mutation seeding:

Mutat Fault instrumentation is a common approach used

in software testing, to generate mutants for our

experimental subjects. We used the PIT mutation testing

system, a recently developed automated mutation testing

tool that works quickly at the level of byte codes

(http:/pitest.org). An empirical study of the efficacy of

mutation testing tools [42] reported PITEV's (evaluation

version) outperformance compared to other tools.

PIT offers three levels of preferences for mutators

(default, stronger, and all mutators). PITEV (evaluation

version) documented outperformance compared to other

methods in an empirical study of the effectiveness of

mutation testing tools [42]. PIT offers three levels of

mutator preferences (default, stronger, and all mutators).

Experimental Procedure and Design

This research focuses on comparing and testing the

existing method through an alternative approach in terms

of effectiveness and efficiency in detecting faults. We

therefore defined the terms efficiency and effectiveness in

the context of this study as follows:

Effectiveness (E)

The goal of effectiveness is to identify as many faults /

killed mutants as possible planted in a system. It is

calculated on the basis of the ratio between the number of

faults / killed mutants per technique detected and the total

number of faults / seed mutants present. In this report,

interchangeably use the words ' mutants destroyed ' and '

faults found. '

Efficiency (EF)

The performance goal is to find the maximum number of

errors with the minimum test case sets. It is calculated

based on the ratio of the number of errors detected /

mutants killed per procedure and the number of test cases

associated with it. The output therefore shows on average

the number of observed faults per executed sample.

The experiment was conducted taking into account all the

activities outlined in Section III as follows: (1) Because

the DFAAD models were not available, the student

generated the requisite ADs for each subject system using

the Enterprise Architect modeling method, provided the

three systems with all the appropriate objects. (2) By

applying the three steps, the DFI has been defined and

annotated in the SUT ADs. (3) DFAADs were used to

derive a data flow chart and to produce abstract test cases.

(4) A concrete test with oracles and input values has been

designed. The test against the SUT was eventually

conducted and the findings were announced. The

DFAADs, as defined in Section III, contain the action

sequences, guard conditions, forks, joins, data members,

and input parameters listed in the Action Pin. The

information stream is annotated directly by operation.

Figs. Examples of these DFAADs for car simulator and

coffee maker behaviors are shown in 4 and 5 respectively.

DFAADs can be very complex or very simple, depending

on the nature of the SUT. For example, a model of a

running car simulation algorithm (Fig. 4) is quite

complex compared to a coffee maker adding, removing,

or editing recipes. These variations in the nature of

experimental samples have a substantial impact on the

performance of the techniques or procedure used, and are

good examples of their efficacy evaluation and

comparison.

Alternative approach

We selected EvoSuite4, a so-called state-of - the-art test

suite generation method [25, 42] as an alternative

approach to comparison and evaluation. Generating test

cases with EvoSuite is a simple task performed by right-

clicking and pressing EvoSuite to create results. We

selected EvoSuite4, a so-called state-of - the-art test suite

generation method [25, 42] as an alternative approach to

comparison and evaluation. Generating test cases with

EvoSuite is a simple task performed by right-clicking and

pressing EvoSuite to create results. We selected EvoSuite

because it was widely practiced through different open-

source types and sizes as well as industrial software

programs, recording many real faults [43]. EvoSuite has

achieved the highest overall scores in the device

competition for SBST 2016 and 2017 [44, 45]. In

addition, EvoSuite provides support for the detection of

PIT mutation.

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-21

Experimental Results

EvoSuite has achieved the highest overall scores in the

device competition for SBST 2016 and 2017 [44, 45]. In

addition, EvoSuite provides support for the detection of

PIT mutation. Each chapter presents results obtained from

the three topics of study.

RQ1.1: Compared to an alternative approach, how does

the proposed DFAAD-based test case generation

technique perform in terms of overall failure detection

efficiency?

RQ1.1 evaluates the potential of the two methods to

overall identification of faults.

Fig. 6 The findings of the overall contrast between the

two methods are discussed. The figure shows how many

faults different techniques have detected or failed to

detect and their related effectiveness scores (in

percentages).

From Fig as can be seen. 6. Test cases developed by

DFAAD have been successfully applied to all

experimental subjects with an average efficacy of 67.9%

for Cruise Control, 69.6% for Elevator and 84.6% for

Coffee Maker. In the case of Cruise control, however, test

cases resulting from the alternative approach managed to

achieve 44 percent efficacy, in the case of Elevator 24.3

percent and in the case of Coffee maker 83.8 percent. The

results showed an overall difference in efficiency of

23.9% for the Cruise control system and 45.3% for the

Elevator system. By comparison, in the case of Coffee

maker, both methods achieved a comparable level of

effectiveness. In the case of the Elevator system, the

observed difference in effectiveness was important.

Analysis also explains the factors leading to these

inequalities. The results in Fig. 6 Indicate DFAAD's

enhanced ability to detect errors relative to the alternative

approach. To assess if the observed difference is

statistically significant, we performed a non-parametric

rank test signed by Wilcox on [46] with a statistical

significance rate below 0.05. The following were the null

and alternative hypotheses: H0: no difference between the

percentage of DFAAD identified faults and alternative

approaches; H1: a disparity between DFAAD's observed

proportion of faults and alternative approaches.

Consequently, the rank test signed by Wilcox on revealed

that the DFAAD (mean rank= 7.36) was considered more

effective than the alternative (mean rank= 5.0) with p-

value= 0.013 and z-score= -2.488. We therefore

dismissed the H0 null hypothesis and concluded that

statistically significant was the observed discrepancy.

RQ1.2: What is the difference in efficacy between the

proposed DFAAD-based test case generation technique

and the alternative approach to the form of observed

faults? This query measured the efficacy of each

technique in terms of the types of fault found. The

findings for each experimental topic and the types of fault

found are described in Tables 5–7. That table shows the

total number of seeded mutants associated with each

mutation operator, the number of mutants killed and

survived and the respective effectiveness levels. The most

outstanding results are bold and discussed further in the

article.

Figure 6. Overall comparison of the two approaches in

terms of fault detection effectiveness

Image. Fig. 7 in addition, the types of mutants killed by

each strategy are visually outlined through subject

systems.

Figure. 7 Comparative analyses of killed mutants across

subject systems

As can be easily observed from the tests, in the case of

Coffee maker, which is further discussed in the following

section, DFAAD succeeded in killing more mutants in

nearly all types of mutation operators across subject

systems except CBM.

 RQ2: What is the relative performance, measured by the

number of detected faults and the number of produced

test cases?

The response to RQ2 offers insights into the relative

efficiency of the techniques in terms of the number of

mutations killed per test performed. We found that with

less functional sample sets, DFAAD destroyed more

mutants. The average number of killed mutants

performed was: 2.6 mutants versus 0.6 in the case of the

Elevator, 2 mutants versus 0.7 in the case of the Cruise

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-22

Control, 3.7 mutants versus 1.1 in the case of the Coffee

Maker, and finally 2.6 mutants versus 0.8 in the overall

subject systems. Image. Fig. 8 summarizes a cross-

comparison of two test case generation techniques '

output.

The most remarkable results are bolded

Table 5. Cross-comparison between observed forms of faults and the cruise control system

Table 6. Cross-comparison with the elevator network of observed fault forms

Table 7. Cross-comparison of detected fault types with Coffee maker system

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-23

6. DISCUSSION

This chapter addresses the efficacy and reliability of

DFAAD-based research on fault detection. To compare

and test the suggested method, the experimental results

are used. We have formulated a variety of RQs to better

understand and summarize the experimental results and

updated our discussion as follows: Discussion of RQ1.1:

We performed a statistical analysis of the derived data to

improve the reliability of the results on this issue.

Figure 8. Summary of efficiency results based on cross-

comparison

We used the Wilcox on signed-rank test, a non-

parametric statistical hypothesis test with a statistical

significance < 0.05, due to the small sample size and non-

normal distribution of the results. Ultimately, the

proposed null hypothesis (p- value = 0.013) was

dismissed in order to conclude that the DFAAD was able

to achieve greater efficiency. Fig. 9 The average

distribution ratio of observed and undetected faults across

DFAAD and EvoSuite for all subject systems is shown.

Like EvoSuite, in the case of observed errors, the

DFAAD yielded a higher mean and was lower in the case

of failure to detect events. It was found that the DFAAD

is relatively effective in detecting errors across all study

subjects. However, the effectiveness of the alternative

approach varied among different systems. For example,

in the case of Coffee maker, the alternative approach

resulted in better efficiency and performed fairly well in

the case of Cruise control but in the case of Elevator

system it was very weak. Perhaps this result was due to

the system's more complex and dynamic run time

behavior. EvoSuite, for example, is excellent at

optimizing protected branches and claims, but is not

adequately capable of handling the SUT's real-time

properties. In the case of DFAAD, however, the system's

real-time actions are more accurately recorded to

strengthen test cases.

Discussion of RQ1.2: This problem investigated whether,

compared to the alternative, the proposed approach was

more or less successful in detecting different types of

faults. Fig. 10 Displays the distribution of the

identification of faults between the mutation operators

and the techniques employed. As you can see from Fig.

10 Unlike the alternative approach, the DFAAD has, on

average, been able to detect a higher number of defects

with respect to all mutation operators except CBM. In

particular, the average detection of NCM mutants (mean

difference + 16.33), MM mutants (mean difference +

7.33), RVM mutants (mean difference + 6.66), and

VMCM mutants (mean difference + 19) were improved

by the DFAAD. Nonetheless, in identifying CBM

mutants, the alternative approach demonstrated greater

effectiveness (mean difference + 2.66). In the case of

Coffee maker, the disparity is significant and may be due

to the lack of usability when designing the AD. It is likely

that even if the system is less complex, less effort or

attention may have been exerted by the modeler to

properly model the system. No notable difference was

found in the identification of IM-related faults between

the two approaches. In the case of Elevator, which is

protected by DFAAD, only one INM mutant was created

by the mutation method.

Figure 9. Average ratio of observed and undetected error

distribution through techniques

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-24

Figure 10. Distribution of faults detection ratios across

mutation operators and techniques

RQ2 discussion: It is possible to measure the performance

or cost-effectiveness of test case generation techniques

from different perspectives such as test execution and

sample generation. In published studies, cost-

effectiveness is calculated in different ways, for example,

based on the size of test drivers in terms of LOC, the

execution time of the CPU, the number of calls of

methods [33], and the proportion of faults identified per

separate assertions created[35]. We assume that the test

case generation output is proportional to the size

produced by the executable tests. Therefore, the

performance is determined by detecting as many faults as

possible with minimal checks. Our results showed that

test cases produced using DFAAD were able to detect an

average of 2.6 faults, while test cases based on the

alternative approach detected an average of only 0.8

faults. To sum up this discussion, EvoSuite failure

detection performance differed from system to system,

while system-wide DFAAD performance was nearly

constant. In the case of the elevator system, EvoSuite

effectiveness was quite weak and slightly better in the

case of the coffee maker, indicating that EvoSuite

effectiveness depends heavily on the existence of SUT.

For example, EvoSuite is not a full cable of test systems

with simultaneous and complex run-time behaviors.

DFAAD, on the other hand, has proved to be best suited

for such systems forms. In addition, these results suggest

that DFAAD has allowed the identification of additional

arithmetic operation-related faults that are considered

more critical and difficult to detect. While EvoSuite is

good at optimizing branches and covering statements, our

results indicate that it does not yet represent the

completeness of the experiment. DFAAD provides the

full benefits of model-based analysis in addition to

providing greater efficacy in detecting faults. Therefore,

the pros and cons of model-based analysis or its

comparison with other methodologies will not be

discussed further.

7. THREATS TO VALIDITY

We discuss various possible threats to the credibility of

the experimental research carried out and how they can

be mitigated in this paragraph. External validity risks

apply to problems that have an effect on the conclusions

reached, such as using the original source code without

errors. Different conclusions could be drawn if real fault

structures were used. Nonetheless, it is not easy to

identify appropriate devices with real experimental faults,

so fault instrumentation is a common practice in research

studies. For test suite creation and PIT mutation testing

software for fault seeding we used EvoSuite as an

alternative approach. Therefore, the efficacy depends

heavily on the characteristics of the devices used.

Therefore, using different test suite creation techniques or

methods (e.g. manually produced, Randoop [47]) or

using actual faults or different mutation tools (e.g.,

MuJava) will produce different results. We also failed to

consider the impact of human subjects in the generation

of test cases in our research. For example, in the

DFAAD-based approach, the outcomes can be

significantly influenced by individuals modeling the

structures and their role in modeling. External validity

challenges contribute to our study's Generalizability

concerning the research topics and the forms of fault

used. Despite our efforts to produce valid results, we

cannot be entirely certain about the Generalizability of

the chosen topics, as the findings are always linked to the

SUT. Through choosing different systems like our

experimental samples, for example, with a different

domain, scale, form, and complexity, we may have

obtained different results. We considered limited

requirements concerning the viability of the systems in

order to minimize this risk when selecting the subject

systems. Similarly, it is not possible to generalize in all

situations the method used for mutant seeding and the

types of mutants given by such a tool. Nevertheless, we

have ensured that well-established and common resources

are chosen, which are actively supported. Threats to

construct credibility are compatible with the

Generalizability and suitability of the measures used in

our experiments. To equate our technique's fault detection

capacity with the alternative approach, we used the fault

detection ratio, widely used in studies with reliable results

to determine test techniques [41]. In addition, the ratio

between the number of detected faults and the number of

usable test cases produced in our experiment may not

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-25

reflect the actual efficiency of the test. For example, if we

used alternative metrics such as the ratio of detected

faults to produced distinct assumptions or the number of

call methods, the results could have been different.

8. CONCLUSION AND FUTURE WORK

In this study, we have suggested a technique for the

generation of cases based on DFAAD. The SUT AD is

annotated with DFI to promote DFC parameters and

define DU pairs of object variables through activities to

model more appropriate test cases. We conducted an

observational study using three widely used methods in

software testing literature to examine the possible

efficacy of the proposed technique. Compared to an

alternative state-of - the-art test suite generation tool, the

efficacy and efficiency of the proposed technique was

evaluated. The statistical significance of the experimental

results suggests that in terms of effectiveness, the new

method outperforms EvoSuite. The findings also showed

that the technique proposed was comparatively more

effective in detecting critical faults (e.g. faults related to

arithmetic operations). It was quite surprising that the

results indicate that, given the full advantages of MBT,

the proposed technique allowed the identification of a

wide range of faults, some of which can not be identified

using an alternative approach. In the future, we have a

project to perform detailed experimental studies involving

additional variables such as time and cost efficiency for

different applications. We will also build supporting tools

for our test case generation technique to enable automatic

mapping of the AD with the related DFG and to allow

automatic detection of entity variable DU pairs through

activities.

REFERENCES

[1] I. Schieferdecker, “Model-based testing,” IEEE

Software, vol. 29, no. 1, pp. 14-18, 2012

[2] Object Management Group, "Unified Modeling

Language Specification Version 2.5.1," 2017;

https://www.omg.org/ spec/UML/About-UML/.

[3] M. Shirole and R. Kumar, “UML behavioral model

based test case generation: a survey,” ACM SIGSOFT

Software Engineering Notes, vol. 38, no. 4, pp. 1-13,

2013.

[4] P. Satish, K. Sheeba, and K. Rangarajan, “Deriving

combinatorial test design model from UML activity

diagram,” in Proceedings of 2013 IEEE Sixth

International Conference on Software Testing,

Verification and Validation Workshops, Luxembourg,

2013, pp. 331-337

[5] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G.

Zheng, “Generating test cases from UML activity

diagram based on gray-box method,” in Proceedings of

11th Asia-Pacific Software Engineering Conference,

Busan, Korea, 2004, pp. 284-291.

[6] P. N. Boghdady, N. L. Badr, M. A. Hashim, and

M. F. Tolba, “An enhanced test case generation technique

based on activity diagrams,” in Proceedings of 2011

International Conference on Computer Engineering &

Systems, Cairo, Egypt, 2011, pp. 289-294.

[7] H. Kim, S. Kang, J. Baik, and I. Ko, “Test cases

generation from UML activity diagrams,” in Proceedings

of 8th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing (SNPD), Qingdao, China,

2007, pp. 556-561.

[8] P. Mahali, S. Arabinda, A. A. Acharya, and D. P.

Mohapatra, “Test case generation for concurrent systems

using UML activity diagram,” in Proceedings of 2016

IEEE Region 10 Conference (TENCON), Singapore,

2016, pp. 428-435

[9] A. Nayak and D. Samanta, “Synthesis of test

scenarios using UML activity diagrams,” Software &

Systems Modeling, vol. 10, no. 1, pp. 63-89, 2011.

[10] M. Chen, P. Mishra, and D. Kalita, “Coverage-

driven automatic test generation for UML activity

diagrams,” in Proceedings of the 18th ACM Great Lakes

Symposium on VLSI, Orlando, FL, 2008, pp. 139-142.

[11] S. Kansomkeat, P. Thiket, and J. Offutt,

“Generating test cases from UML activity diagrams using

the Condition- Classification Tree Method,” in

Proceedings of 2010 2nd International Conference on

Software Technology and Engineering, San Juan, PR,

2010.

[12] C. Mingsong, Q. Xiaokang, and L. Xuandong,

“Automatic test case generation for UML activity

diagrams,” in Proceedings of the 2006 International

Workshop on Automation of Software Test, Shanghai,

China, 2006, pp. 2-8.

https://www.omg.org/

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-26

[13] K. Pechtanun and S. Kansomkeat, “Generation test

case from UML activity diagram based on AC grammar,”

in Proceedings of 2012 International Conference on

Computer & Information Science (ICCIS), Kuala

Lumpur, Malaysia, 2012, pp. 895-899.

[14] D. Kundu and D. Samanta, “A novel approach to

generate test cases from UML activity diagrams,” Journal

of Object Technology, vol. 8, no. 3, pp. 65-83, 2009.

[15] P. N. Boghdady, N. L. Badr, M. Hashem, and M.

F. Tolba, “A proposed test case generation technique

based on activity diagrams,” International Journal of

Engineering & Technology IJET-IJENS, vol. 11, no. 3,

pp. 1-21, 2011.

[16] C. H. Chang, C. W. Lu, W. C. Chu, X. H. Huang,

D. Xu, T. C. Hsu, and Y. B. Lai, “An UML behavior

diagram based automatic testing approach,” in

Proceedings of 2013 IEEE 37th Annual Computer

Software and Applications Conference Workshops, 2013,

pp. 511-516.

[17] S. Dahiya, R. K. Bhatia, and D. Rattan,

“Regression test selection using class, sequence and

activity diagrams,” IET Software, vol. 10, no. 3, pp. 72-

80, 2016.

[18] P. Ammann and J. Offutt, Introduction to Software

Testing. New York, NY: Cambridge University Press,

2008.

[19] A. Rauf, “Data flow testing of UML state machine

using ant colony algorithm (ACO),” International Journal

of Computer Science and Network Security, vol. 17, no.

10, pp. 40-44,

[20] 2017.

[21] M. Felderer and A. Herrmann, “Comprehensibility

of system models during test design: a controlled

experiment comparing UML activity diagrams and state

machines,” Software Quality Journal, vol. 27, no. 1, pp.

125-147, 2019.

[22] D. Gessenharter and M. Rauscher, “Code

generation for UML 2 activity diagrams,” in Modelling

Foundations and Applications. Heidelberg: Springer,

2011, pp. 205-220.

[23] M. Hossein, A. Hemmat, O. A. Mohamed, and M.

Boukadoum, “Towards code generation for ARM Cortex-

M MCUs from SysML activity diagrams,” in Proceedings

of 2016 IEEE International Symposium on Circuits and

Systems (ISCAS), Montreal, Canada, 2016, pp. 970-973.

[24] S. Schupp, “Code generation for UML activity

diagrams in real-time systems,” Ph.D. dissertation,

Technische Universität Hamburg, Germany, 2016

[25] 21. A. Jaffari, J. Lee, C. J. Yoo, and J. H. Jo, “Test

case generation technique for IoT mobile application,” in

Proceedings of 2017 Spring KIPS Conference, Jeju,

Korea, 2017, pp. 618-620.

[26] G. Fraser and A. Arcuri, “EvoSuite: automatic test

suite generation for object-oriented software,” in

Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of

Software Engineering, Szeged, Hungary, 2011, pp. 416-

419.

[27] J. Offutt and A. Abdurazik, “Generating tests from

UML specifications,” in UML’99 – The Unified

Modeling Language. Heidelberg: Springer, 1999, pp.

416-429.

[28] A. Cimatti, E. Clarke, F. Giunchiglia, and M.

Roveri, “NuSMV: a new symbolic model checker,”

International Journal on Software Tools for Technology

Transfer, vol. 2, no. 4, pp. 410-425, 2000.

[29] P. G. Frankl and E. J. Weyuker, “An applicable

family of data flow testing criteria,” IEEE Transactions

on Software Engineering, vol. 14, no. 10, pp. 1483-1498,

1988.

[30] G. Denaro, M. Pezze, and M. Vivanti, “On the

right objectives of data flow testing,” in Proceedings of

2014 IEEE Seventh International Conference on Software

Testing, Verification and Validation, Cleveland, OH,

2014, pp. 71-80.

[31] R. Anbunathan and A. Basu, “Dataflow test case

generation from UML Class diagrams,” in Proceedings of

2013 IEEE International Conference on Computational

Intelligence and Computing Research, Enathi, India,

2013, pp. 1-9.

[32] L. Briand, Y. Labiche, and Q. Lin, “Improving the

coverage criteria of UML state machines using data flow

analysis,” Software Testing, Verification and Reliability,

vol. 20, no. 3, pp. 177-207, 2010.

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-27

[33] T. Waheed, M. Z. Z. Iqbal, and Z. I. Malik, “Data

flow analysis of UML action semantics for executable

models,” in Model Driven Architecture-Foundations and

Applications. Heidelberg: Springer, 2008, pp. 79-93.

[34] S. Mouchawrab, L. C. Briand, Y. Labiche, and M.

Di Penta, “Assessing, comparing, and combining state

machine-based testing and structural testing: a series of

experiments,” IEEE Transactions on Software

Engineering, vol. 37, no. 2, pp. 161-187, 2010.

[35] P. C. Jorgensen, Software Testing: A Craftsman’s

Approach. Boca Raton, FL: CRC Press, 2014

[36] N. Li and J. Offutt, “Test oracle strategies for

model-based testing,” IEEE Transactions on Software

Engineering, vol. 43, no. 4, pp. 372-395, 2016.

[37] J. Badlaney, R. Ghatol, and R. Jadhwani, “An

introduction to data-flow testing,” North Carolina State

University, Technical Report No. TR-2006-22, 2006.

[38] R. Malhotra, Empirical Research in Software

Engineering: Concepts, Analysis, and Applications. Boca

Raton, FL: CRC Press, 2015.

[39] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,

B. Regnell, and A. Wesslen, Experimentation in Software

Engineering. New York, NY: Springer, 2012.

[40] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,

P. W. Jones, D. C. Hoaglin, K. El Emam, and J.

Rosenberg, “Preliminary guidelines for empirical

research in software engineering,” IEEE Transactions on

Software Engineering, vol. 28, no. 8, pp. 721-734, 2002.

[41] Software-artifact Infrastructure Repository,

https://sir.csc. ncsu.edu/portal/index.php.

[42] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is

mutation an appropriate tool for testing experiments?,” in

Proceedings of the 27th International Conference on

Software Engineering, St. Louis, MO, 2005, pp. 402-411.

[43] M. Kintis, M. Papadakis, A. Papadopoulos, E.

Valvis, N. Malevris, and Y. Le Traon, “How effective are

mutation testing tools? An empirical analysis of Java

mutation testing tools with manual analysis and real

faults,” Empirical Software Engineering, vol. 23, no. 4,

pp. 2426-2463, 2018.

[44] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri,

and J. Benefelds, “An industrial evaluation of unit test

generation: finding real faults in a financial application,”

in Proceedings of the 39th International Conference on

Software Engineering: Software Engineering in Practice

Track, Buenos Aires, Argentina, 2017, pp. 263-272.

[45] G. Fraser and A. Arcuri, “EvoSuite at the SBST

2016 tool competition,” in Proceedings of 2016

IEEE/ACM 9th International Workshop on Search-Based

Software Testing (SBST), Austin, TX, 2016, pp. 33-36.

IEEE.

[46] G. Fraser, J. M. Rojas, J. Campos, and A. Arcuri,

“EvoSuite at the SBST 2017 tool competition,” in

Proceedings of 2017 IEEE/ACM 10th International

Workshop on Search-Based Software Testing (SBST),

Buenos Aires, Argentina, 2017, pp. 39-42.

[47] R. Lowry, “Concepts and Applications of

Inferential Statistics,” Vassar College, Poughkeepsie,

NY, 2011

[48] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball,

“Feedback directed random test generation,” in

Proceedings of the 29th International Conference on

Software Engineering, Minneapolis, MN, 2007, pp. 75-

84.

https://sir.csc/

