
 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-51

Variable-to-Variable Run Length Encoding Technique for Testing

Low Power VLSI Circuits

1
Zarul Fitri Zaba,

2
Idyawati Hussein

1
School of Computer Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

2
School of Computing, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

Abstract: Enhancing the integration capability in semiconductor technology requires a large amount of test data,

resulting in higher memory, time for transition and time for testing. A novel lossless data compression technique is

proposed in this paper to reduce test data, time and memory based on the encoding scheme factor to variable run size. A

test data are partitioned into variable length test patterns in this scheme and the bits are compressed into variable length

codes by applying the compression algorithm. With a limited number of code words, the encoding technique enhances

the reduction of test data. The compression technique is effective, especially when the 0s and 1s runs in the test set are

high and compress the data streams composed of 0's and 1's runs efficiently. The variable to variable run length code

algorithm is used to make changes to test vectors and can be adapted to compress pre-computed test sets to test system-

on-chip (SOC) embedded cores.

Keywords: Pre-computed test sets; Compression codes; Decompression; Embedded core testing; SOC testing

1. INTRODUCTION

Due to the advent of integration in semiconductor

technology, the electronics industry has experienced a

phenomenal growth over the past two decades. Integrated

circuits consist of various types of active and passive

components that are manufactured to form systems on a

single chip. The multiple modules and IP cores in a

system-on-chip (SOC) wrap functions such as a

processor, memory and various technologies such as

CMOS logic into analog circuits. The large integrated

devices are made up of millions of transistors and

numerous hardware modules with the increase of

technology. The SOC, however, presents many

challenges such as increased test data, automatic test

equipment (ATE) memory storage, transition time, test

time, test power, and TAT. Test data is usually generated

and stored on workstations. Individual types of

application-specific integrated circuit (ASIC) require a

more frequent download from workstation to ATE of test

data. The ASIC test sets will be as large as gigabytes, and

the time taken to upload the test data is more significant

as it takes several minutes to hours to download. ATE's

performance is affected by uploading test data time. To

improve ATE's throughput, reducing the download time

of test data is very important. A high volume of test data

is directly proportional to higher memory and transition

time. Because of limited bandwidth, memory, and I / O

channels, the transfer of large test data between the ATE

and chip is a bottleneck [1]. During data transfer from

ATE to the test device (DUT), the Limited bandwidth

increases the test time and test costs. Built-in self-test

(BIST) and test-data compression are the techniques

generally used to minimize SOCs test data size and test

request time. Some of the problems are as follows when

the test data increases: Limited space on ATE, Long

upload time, Limited I / O bandwidth. Compression of

test data is a promising solution for storing and

transmitting compressed data from ATE to chip as well as

speeding up the interaction between ATE and SOC

during the test. Data compression is a data file size

reduction procedure. The use of compression test data is

to compress the pre-computed test set (TD) provided by

the core vendor to a smaller test set (TE) and then stored

in the memory of the automatic test device. Test data

reduction reduces the size of ATE memory requirements,

test time, and test power [2]. A new compression of test

data is required to test the SOC core without exceeding

memory, bandwidth and power limitations. Before and

after scanning chains, additional on-chip hardware is

added. An on-chip decoder will decompress the

compressed memory test data and supply the original data

to the test device. After decompression, the lossless test

data compression reproduces all the bits [3]. Test vector

compression consists of three categories as follows [4,5]:

code-based schemes use a data compression technique to

encode test cubes, linear-decompression-based schemes

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-52

decompress data using only linear operations [6],

broadcast-based schemes transmit the same value to

multiple scan chain. The code-based scheme approach

partitions the pre-computed test sets (TD) into symbols

and replaces a symbol with codeword by applying a

compression algorithm to form encoded data. Decoding is

done using a decoder that simply converts each codeword

to the original data. In these methods, structural circuit

information under tests (CUT) is not required but is well

suited for IP core-based SOCs. The different categories

are described as follows [7, 8] based on this scheme: run-

length-based codes, dictionary-based codes, statistical

codes [9]. The Run-Length coded scheme is a highly

effective data compression method for testing SOCs with

a large number of IP cores in the current generation. In

[10], the Simple run length code scheme is used to

encode 0s runs into words with fixed length code. The

architecture of the cyclic scan chain is used to increase

the frequency of 0s by allowing different vectors to be

applied and test cube reordered. The vectors of difference

between test cubes are equivalent to two test cubes XOR

and encoded with a run-length code. The Golomb-based

compression technique is proposed to encode 0s runs with

variable-length code words [11-13]. Here, each group is

made up of specific identification symbols. The words of

the variable length code are used to encode longer data

runs efficiently. The frequency-directed run-length codes

are similar to the Golomb codes suggested in [14,15] and

variable group size is the difference in both methods.

FDR is a variable to variable length encoded scheme and

is a method of mapping variable length runs of 0s to

variable length code words after application of the

compression algorithm. The FDR codes are not very

effective when runs of 1s are high on test sets. This

coding scheme is effective for compressing data for

several 1s and long runs of 0s, but it is inefficient for data

streams consisting of both 0s and 1s runs. To decompress

FDR code, the on-chip decoder must identify the prefix

and the tail. FDR requires a powerful, high-range

overhead decoder. In order to overcome the decoder

difficulty in FDR, the Huffman approach and FDR were

combined to use the variable length pattern as input to the

Huffman algorithm instead of using fixed length pattern

[16, 17]. This therefore maintains the compression ratio

due to the FDR process and uses limited Huffman to

reduce the field overhead. In place of X-bits, 0s and 1s

are filled to improve the occurrence of block frequencies

[18]. Used to maximize the runs of 0s in the zero-fill

algorithm, it fills the 0s instead of unspecified bits to

reduce the scan-in test power [19]. The Extended

Frequency Directed Run-Length Coding [EFDR] and

Alternating Run-Length coding shown in [7, 20] defines

that EFDR is ideal for test data streams consisting of both

0s runs followed by 1s runs and vice versa. The 0s runs

followed by 1 are encoded in the EFDR method as in

FDR, but the difference here is an additional bit is added

at the beginning of the FDR code word. The Alternating

Run-Length code is a variable to variable length code,

and here the test set is composed of alternating 0s runs

and 1s runs. It is possible to identify the data runs by

adding variable ' a ' to the core. When a=0, the run-length

is considered to be runs of 0s, when a=1 is considered to

be run-lengths of 1s. Only nine code words are used in

[21] to encrypt the test data, and the technique of

encoding is flexible. In order to obtain a higher

compression ratio, variable nine coded compression uses

a variable length block for each pattern. In [22,23], the

multi-stage encoding technique, i.e. alternating

frequency-directed equal run-length (AFDER) and run-

length-based Huffman encoding (RLHC), is proposed to

reduce test data and application time. Together with nine-

coded compression technique, multi-stage encoding

enhances the reduction of test data. A method called

alternating variable run-length codes (AVR) in [24]

reduces the test data, scan power consumption, test

application time (TAT). In test sets up to 0s and 1s,

proper mapping of don't care results in average and peak

power consumption savings without slower scan clocks.

Using extended variable length codes [25] to reduce data,

time and memory, a test data compression scheme based

on fixed to variable length coding with a limited number

of code words is proposed. In many of the code-based

compression techniques, the main objective is to reduce

the volume of test data without giving any priority to the

reduction of test power, for example, the test compression

techniques outlined for [19, 20, 22, 26] focused mainly on

the reduction of test data. In some of the independent

compression techniques, for example, techniques detailed

in [22, 27], the test power and test data are reduced.

2. MAIN CONTRIBUTION

A new method for testing embedded processor core using

pre-computed test sets was presented in this paper based

on variable to variable run length code. This method

provides an efficient way of reducing the required test

data and memory for automatic test equipment (ATE). By

applying an algorithm to each variable test pattern to

enhance the compression ratio, the compression

technique efficiently compresses the runs of 0s and 1s.

Here, a different code word pattern is applied to runs of 0

followed by 1 and also to runs of 1 followed by 0, in

order to determine whether the run length pattern is either

run of 0's or run of 1's. If the test pattern is 0's followed

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-53

by 1's, and then the compressed code starts with a bit' 0.'If

one runs the test pattern followed by 0, then the

compressed code starts with a bit ' 1. 'The following is the

organization of this paper. Section 2 explains the detailed

compression technique of variable to variable run length

and describes the process of data compression using an

algorithm, flowchart and decompression. Section 3

explains the ISCAS reference circuit experimental results

obtained.

Variable to Variable Run Length Code

In this section, the detailed compression technique of

variable to variable run length is presented and also

describes the process of data compression using the

architecture of algorithm, flowchart and decompression.

Variable to variable run length code

In this section, the detailed compression technique of

variable to variable run length is presented and also

describes the process of data compression using the

architecture of algorithm, flowchart and decompression.

Take TD = {t1, t2, t3 ... tn}, where n is the number of bits

in pre-computed test sets (TD). Partition the test sets into

variable run length patterns and use code word to

compact the test sets. For both 0's runs and 1's runs, the

code word will be different. Table 1 illustrates the

variable-to-variable-length coding scheme encoding

example. This method consists of two types of run length

pattern (i.e. 0 runs followed by 1 runs followed by 1 runs

followed by 0 runs). A code word is allocated separately

for each type of runs. The code word for 0's runs in each

group is the inverted code word data for 1's runs. The

code word present in each group determines a 2n pattern,

where n is 0, 1, 2, 3... According to the test data, 0's runs

were considered as 0's strings followed by a bit' 1' and 1's

runs were considered as 1's strings followed by a bit'

0.'For instance, 000001 and 00001 are a 0's run sequence

and their run length is 5, 4. 11111110 and 11110 is a 1's

run pattern with a running length of 7, 4. The start bit of

code word specifies which type of runs were processed

and the code word length is used to identify the unit. The

difference between the proposed method and other

variable run length codes shows that separate code words

are assigned for both 0's and 1's runs, since no prefix and

tail are considered here.

Figure 1. Block Diagram of Variable to Variable Run Length Coding

Table 1. Example of Proposed Coding Scheme

Group Run Code World Runs

of 0’ s

Code word Runs of

1’s

Code

word

Length

B0 1 0 1 1

B1 2 01

00

10

11

2

B2 4

5

6

7

011

010

001

000

100

101

110

111

3

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-54

B3 8

9

10

11

12

13

14

15

0111

0110

0101

0100

0011

0010

0001

0000

1000

1001

1010

1011

1100

1101

1110

1111

4

B4 16

…

31

011111

…

00000

10000

…

11111

5

B5 32

…

63

011111

…

000000

100000

…

111111

6

…. ….. …. ….. …..

From Table 1 observation, the test pattern is divided into

0's runs followed by 1 and 1's runs followed by 0. The

test patterns are mapped to the appropriate code word

based on run type and number of repeated bits or run

length. The group size is determined by the group

number, and each group's members are equal to 2 m,

where m is the group number, m = 0, 1, 2, 3 ... For both

runs of 0's and 1's, the code word bit size is equal to n. A

group B0 is made up of one (20) member. Note that B0

output will be the pattern of 21(2n) (i.e.) 0 and 1. In B0,

the run length test pattern is 1 (viz) 01 (0's runs) and 10

(1's runs). The run length is 1 for 10 and the code word is

1. The run length for 01 is 1 and the code word for 0 is

inverted code word data 1. A B1 group is made up of two

(21) members. Notice that B1 production will consist of

22 patterns (i.e. 00, 01, 10, and 11). For B1, the run-

length test pattern is 2 (viz) 001 (0's runs) and 110 (1's

runs). The run length is 2 for 110 and the code word is

10. The run length for 001 is 2 and the code word is 01,

which is code word 10 inverted data. For patterns of 110

and 001, the output is 10 and 01. If the running length test

pattern is 3 (viz) 0001 (0's runs) and 1110 (1's runs). The

run length is 3 for 1110 and the code word is 11. The run

length for 0001 is 3 and the code word is 00 which is

inverted code word 11 info. So, the output is 11 and 00

for pattern 1110 and 0001. The running bit size of 2 and 3

is the same. A group B2 is made up of 4 (22) members.

Note that B2 will result in 23 patterns (i.e. 000, 001, 010

... 110, 111). For B2, the run-length test pattern is 4 (viz)

00001 (0's runs) and 11110 (1's runs). The run length is 4

for 11110 and the code word is 100. The run length for

00001 is 4 and the code word is 011, which is code word

100 inverted data So the output for the pattern of 11110

and 00001 is 100 and 011. If the running period test

pattern is 5 (viz) 000001 (0's runs) and 111110 (1's runs).

The run length for 111110 is 5 and the code word is 101.

The run length for 000001 is 5 and the code word is 010,

which is code word 101 inverted info. So, the production

is 101 and 010 for sequence 111110 and 000001. The run

length is 6 for 1111110 and the code word is 110. The run

length for 0000001 is 6 and the code word is 001, which

is code word 110 inverted information. The output for the

pattern 1111110 and 0000001 is 110 and 001. The run

length is 7 for 111111110 and the code word is 111. The

run length is 7 for 111111110 and the code word is 111.

The run length for 00000001 is 7 and the code word is

000 that is inverted code word 111 data. So the output

for the pattern 11111110 and 00000001 is 111 and 000.

The running bit size of 4, 5, 6 and 7 is the same. Up to m

group numbers are continuing this cycle. Here, in order to

reduce test data, a run of 0's and 1's is mapped to shorter

code words. Figure 2 demonstrates the example of

encoding set to fixed run length encoding scheme. As an

example from the benchmark circuit, the test vector is

considered. For each pattern, an algorithm is applied (see

Table 1). From the encoding procedure example, note that

for runs of 1's the start bit of code word is 1 and for runs

of 0's the start bit of code word is 0. The original bits

number is 55, while the compressed bits are 28.

Data compression procedure using algorithm and flow

chart

The Algorithm 1 and Figure 3 describe the compression

algorithm process using the proposed scheme of coding.

If the test pattern is 1's run, then 1's run length is encoded

as 2n code word. If the test pattern is running from 0's,

then 0's run length is encoded as 2n code word inverted

information. 2n code word is allocated for 2 m run length

pattern as shown in the case where m = 0, 1, 2, 3 ... N= 1,

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-55

2, 3 ... The performance is assigned to the pattern of 20

run lengths (01 or 10). 22 bit pattern is assigned as output

for 21 run-length patterns (001 or 110, 0001 or 1110). 23

bit pattern is allocated as output for 22 run length patterns

(00001 or 11110, 000001 or 111111, 0000001 or

1111110). This goes on up to m patterns and n word

code.

Algorithm 1.Variable to Variable Run Length Coding

Algorithm

1. Generate test vectors (TD) pre-computed.

2. Let x be the vector of the input test, I'm the

starting position, and i+1 is the next position.

3. Find the TD's size.

4. Attribute count = 0.

5. If x [i] = = x [i+1], count multiple bits (count =

count + 1).

6. If the test pattern is 1's ride, give count interest.

7. If test pattern is 0's, give count meaning

transformation (0 as 1, 1 as 0)

8. Case:

 If 1 ≤ count < 2, assign count as 21 code word

 If 2 ≤ count < 4, assign count as 22 code word

 If 4 ≤ count < 8, assign count as 23 code word

 If 8 ≤ count < 16, assign count as 24 code word

 If 16 ≤ count < 32, assign count as 25 code word

 If 32 ≤ count < 64, assign count as 26 code word

9. Repeat the algorithm till end of data stream

10. Calculate TC = Total compressed bits

Figure 2. Example of encoding procedure of variable to

variable run length code

3. DECOMPRESSION ARCHITECTURE

Figure 4 demonstrates the design of decompression,

which is used to decompress the encoded data. The

decoder is scalable and simple. The architecture is made

up of finite state machines, clocks, and exclusive OR

gates. The bit-in is the FSM's entry. The activate signal is

used when the decoder is ready to monitor the encoded

information. The signal shift is used to control the

codeword to be passed via exor gate to the m-bit counter.

Signal dec is used to decrease counter and rs is used to

indicate counter reset status.

Figure 3. Flow Chart of Variable to Variable Run Length

Coding

Figure 4. Conceptual architecture of Decompression

To decode the code word into run-length pattern, the

counter of log2 m-bits was used to count the length of the

code word. The inc and dec1 are used to increase and

decrease the counter and rs1 is used to indicate the end of

counting. The output signal from the FSM controls the

ex- or gate and indicates if the decoding of runs of 1's is

complete. The signal v shows the valid output. Using

FSM, the sequence is detected and FSM output is code

word. The code word starts with a bit ' 0 ' for run type 0's

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-56

and the code word begins with a bit ' 1 ' for run type 1's.

If bit-in is ' 0 ' the code word is a compressed run type 0's

code and if bit-in is ' 1 ' it is a compressed run type 1

code.

The operation of the decoder is explained as follows:

Signal en will initially be high and ready to receive bit-in

data. If the input bit-in is 1, it will be 0 and if the input

bit-in is 0, it will be 1. After the ex-or operation phase,

when the signal shift is high, the data fed to the counter.

If bit-in is 1, and a= 0, the execute type 1 code word will

not be changed. It remains as the compressed original

code. If the compressed code is 1011 ex-or 0, for

example. The performance is going to be 1011. If bit-in is

0, and a = 1, the execute sort 0 code word will be

modified. This is because the corresponding pattern of

run length can be achieved. For example, if the

compressed code is 0100, then the output should be 11

zeros followed by 1. However, 0100's length is 4 and this

is 1's inverted code word runs info. In order to reach the

correct output, the 0100 should be reversed again. For

example, the output will be 1011 if the compressed code

is 0100 ex-or with 1. In order to reach the correct output,

the 0100 should be reversed again. For example, the

output will be 1011 if the compressed code is 0100 ex-or

with 1. The m-bit counter is then decreased; allowing

signal dec to go high until rs was high. The signal v

shows a valid output. The data from the ex-or gate output

was moved to the m-bit counter until the counter value of

log2m-bit was 0. So dec1 goes up and decrement of the

counter. The rs1 signal went up when the counter log2m-

bit reached state 0. It implies moving the code word to the

m-bit counter. The FSM outputs the 1's corresponding to

the word code and shows the correct output of the signal

v. The FSM output data such as 11110 is ex-or 0 when

bit-in = 1 and a = 0. So the output is going to be 11110.

This indicates that form 1 runs the decoded data. If bit-in

= 0 and a = 1, the FSM output data like 11110 is ex-or 1.

So that's going to be 00001 output. This indicates that

type 0's are running the decoded data.

Figure 5 shows the state diagram for the FSM used to

classify sequence patterns. The FSM consists of six states

in Figure 5. The process of State S0 is a 1-bit decoding

word (i.e.) 1 or 0. The State S0 querS1 method is a 2-bit

word decoding (i.e. 00, 01, 10, and 11). The state process

S0 →S1→ is a 3-bit decoding word (i.e.) 000, 001

111. Meanwhile, 111. The state process S0 →S1 → is a

4-bit decoding word (i.e. 0000, 0001 1111. The State

S0 →S2 →S3 →S4 process is a 5-bit word (i.e., 00000,

00001) decoding code. 11111. The State S0S1 → S3→S4

→S5 method is a 6-bit word decoding (i.e. 000000,

000001). 111111.

4. EXPERIMENTAL RESULTS

Using ISCAS benchmark circuit, the algorithm was

analyzed. The tests of compression were obtained using

the compression technique of variable to variable length.

The result is compared to other compression techniques

such as multi-stage encoding technique [24], Golomb

[20], FDR [15], EFDR [24], 9C [22], VIHC [18], EVRL

[26] to show the efficacy of the proposed technique. The

compression ratio is calculated using the formula CR

(percent) = ((TD-TE)/TE) * 100 where TD is the pre-

computed test bits of certain benchmark circuits and TE

is the encoded test data. Column 2 shows the compression

ratio of the different benchmark circuits from Table 2.

Compared to the original test vectors, the encoded bits are

less. Therefore, the reduction of test data is accomplished

through the use of the proposed algorithm. Note that,

compared to the original test vectors; the encoded bits are

smaller for all the benchmark circuit. The combination

circuit of c2670 shows the highest 83.84 percentage. The

average compression of different benchmark circuits is

79.80%. The compression ratio relation with other

compression methods is shown in Table 3. The proposed

algorithm shows a good compression ratio relative to

other compression strategies from the analysis of Table

3[28, 29].

Figure 5. Finite State Machine for Decompression

Architecture

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-57

Table 2. Compression ratio for proposed technique

Circuit Compression

ratio

Size of TD

(bits)

Size of TE

(bits)

No. of bits for

Mintest

c2670 83.84 20271 3276 10252

c7552 81.12 25254 4767 15111

s5378 78.25 23754 5167 20758

s9234 82.68 39273 6804 25935

s13207 75.25 165200 40885 163100

s15850 80.68 76986 14870 57434

s38417 76.93 164736 38010 113152

s38584 79.80 199104 40224 161040

Table 3. Comparison of compression ratio with other compression techniques

5. CONCLUSION

Compression of test data is the best solution for

minimizing larger volume of test data. This paper

presents a new method of compression and

decompression to test embedded cores in SOC. The

proposed method is set to fixed length coding technique

and this method proves to be an efficient method of

testing data compression to save space and time for

testing. The runs of 0's and runs of 1's will have different

code word in this technique, so that the run type can be

defined when decoding. The structure of the

decompression is presented. This technique leads to

decreased test data, saves the requirements of ATE

memory and channel capacity. The ISCAS benchmark

circuit experimental results show that the method is very

efficient in reducing test data.

REFERENCES

[1] Rau JC, Wu PH, Li WL (2012) Test Slice

Difference Technique for Low- Transition Test Data

Compression. J Inform Sci Eng 15: 157-166.

[2] Wu HF, Cheng YS, Zhan WF, Cheng YF, Wu Q,

et al. (2014) A Test Data Compression Scheme Based on

Irrational Numbers Stored Coding. Scientific World

Journal.

[3] Yeh PS (2002) Implementation of CCSDS lossless

data compression for space and data archive applications.

NASA/ Goddard space flight centre.

[4] Yamaguchi T, Tilgner M, Ishida M, Ha DS (1997)

An Efficient method for compressing data. Int Test conf.

[5] Biswas NS, Das SR, Petriu EM (2014) On System-

On-Chip Testing Using Hybrid Test Vector Compression.

IEEE Trans Instrum Meas 63: 2611-2619.

[6] Yang JS, Lee J, Touba NA (2014) Utilizing ATE

Vector Repeat with Linear Decompressor for Test Vector

Compression. IEEE Trans Comput Aided Des Integr
Circuits Sys 33: 1219-1230.

Circuit Compression

ratio (proposed)

Multistage

encoding

technique

Golomb FDR EFDR 9C VIHC EVRL

c2670 83.84 - 56.08 - 55.53 - - -

c7552 81.12 - 15.50 - 43.02 - - -

s5378 78.25 73.2 54.7 48.4 44.2 45.6 25.29 59.9

s9234 82.68 64.4 37.1 36.8 34.2 27.4 28.29 58.8

s13207 75.25 86 44.3 24.9 22.7 30.5 56.16 59.37

s15850 80.68 74.7 52.1 25 20.9 24.7 52.35 58.84

s38417 76.93 69.4 45.2 46.1 22.4 22.3 60.92 68.34

s38584 79.80 70.3 43.3 24.1 20 13.9 46.76 59.3

Average 79.82 74.2 43.53 34.3 32.86 22.9 44.96 60.76

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5 Issue: 2 December 2019

Copyright © 2019 Mélange Publications CS-58

[7] Touba NA (2006) Survey of test vector

compression techniques. IEEE Des Test Comput 23: 294

303.

[8] Mehta U, Dasgupta KS, Devashrayee NM (2009)

Survey of Test Data Compression Techniques
Emphasizing Code Based Schemes. 12th Euromicro

Conference on Digital System Design, Architectures,

Methods and Tools

[9] Jas A, Ghosh-Dastidar J, Touba NA (1999) Scan

Vector Compression/ Decompression Using Statistical

Coding. VLSI Test Symposium pp: 114-120.

[10] Jas A, Touba NA (1998) Test vector compression

via cyclical scan chains and its application to testing core-

based designs. Proceedings of the IEEE International Test

Conference (ITC) pp: 458-464.

[11] Chandra, Chakrabarty K (2000) Test data

compression for system-on-a-chip using Golomb codes.

Proceedings of the 18th IEEE VLSI Test Symposium

(VTS ‘00) pp: 113-120.

[12] Robert Theivadas J, Ranganathan V, Perinbam

JRP (2016) System-on-Chip Test Data Compression

based on Split-Data Variable Length (SDV) Code.

Circuits and Sys 7: 1213-1223.

[13] Chandra A, Chakrabarty K (2001) Efficient test

data compression and decompression for system-on-a-

chip using internal scan chains and Golomb coding.

Proceedings of the Conference on Design, Automation

and Test in Europe, Munich.

[14] Li L, Chakrabarty K (2004) On using an

exponential—Golomb codes and sub exponential codes

for system-on-chip test data compression. J Electro

Testing 20: 667-670.

[15] Chandra A, Chakrabarty K (2001) Frequency-
directed run length (FDR) codes with application to

system-on-a-chip test data compression. Proceedings of

the 19th IEEE VLSI Test Symposium pp: 42-47.

[16] Chandra A, Chakrabarty K (2003) Test Data

Compression and Test Resource Partitioning for System-

on-a-Chip Using Frequency-directed Run-length (FDR)

Codes. IEEE Trans Computer 52: 1076-1088.

[17] Li L, Chakrabathy K (2003) Test Data

Compression Using Dictionaries with Fixed-Length
Indices. Proceedings of the 21st IEEE VLSI Test

Symposium (VTS’03) pp: 219-224.

[18] Gonciari PT, Al- Hashimi BM, Nicolici N (2003)

Variable-length input Huffman coding for system-on-

chip test. IEEE Trans Comput Aided Des Integr Circuits

Sys 22: 783-796.

[19] Jas A, Ghosh- Dastidar J, Mom-Eng Ng, Touba

NA (2003) An efficient test vector compression scheme

using selective Huffman coding. IEEE Trans Comput

Aided Des Integr Circuits Sys 22: 797-806.

[20] Chandra A, Chakrabarty K (2001) System-on-a-
Chip Data Compression and Decompression Architecture

Based on Golomb Code. IEEE Trans Comput Aided Des

Integr Circuits Sys 20: 355-368.

[21] Mehta US, Dasgupta KS, Devashrayee NM (2010)

Run-Length-Based Test Data Compression Techniques:

How Far from Entropy and Power Bounds?-A Survey.

Hindawi Publishing Corporation, VLSI Design.

[22] Tehranipoor M, Nourani M, Chakrabarty K (2005)

Nine-coded compression technique for testing embedded

cores in SoCs. IEEE Trans Very Large Scale Integrated
Syst 13: 719-731.

[23] Tsai PC, Wang SJ, Lin CH, Yeh TH (2007) Test

data compression for minimum test application time. J Inf

Sci Eng pp: 1901-1909.

[24] Sivanantham S, Padmavathy M, Gopakumar G,

Mallick PS, Perinbam JRP (2014) Enhancement of test

data compression with multistage encoding. Integration

VLSI J 47: 499-509.

[25] Bo Ye, Zhao Q, Zhou D, Wang X, Luo M (2011)

Test data compression using alternating variable run-

length code. Integration the VLSI Journal 44: 103-110.

[26] Robert Theivadas J, Ranganathan V (2014) Test

Data Compression Using a New Scheme Based on

Extended Variable Length Codes. World Appl Sci J 32:

2297-2302.

[27] Kavousianos X, Kalligeros E, Nikolos D (2008)

Test Data Compression Based on Variable-to-Variable

Huffman Encoding With Codeword Reusability. IEEE
Trans Comput Aided Des Integr Circuits Sys 27: 1333-

1338.

[28] Kalode P, Khandelwal R (2012) test data

compression based on golomb coding and two-value

golomb coding. Signal Image Process: Int J vol: 3.

[29] Luo Z, Li X, Li H, Yang S, Min Y (2002) Test

Power Optimization Techniques for CMOS Circuits.

Proceedings of the 11th Asian Test Symposium.

