
                            International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 5 Issue: 2 December 2019 

Copyright © 2019 Mélange Publications                                                                                                    CS-51 

 

Variable-to-Variable Run Length Encoding Technique for Testing 

Low Power VLSI Circuits 
 

1
Zarul Fitri Zaba, 

2
Idyawati Hussein 

1
School of Computer Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia 

2
School of Computing, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia 

 

Abstract: Enhancing the integration capability in semiconductor technology requires a large amount of test data, 

resulting in higher memory, time for transition and time for testing. A novel lossless data compression technique is 

proposed in this paper to reduce test data, time and memory based on the encoding scheme factor to variable run size. A 

test data are partitioned into variable length test patterns in this scheme and the bits are compressed into variable length 

codes by applying the compression algorithm. With a limited number of code words, the encoding technique enhances 

the reduction of test data. The compression technique is effective, especially when the 0s and 1s runs in the test set are 

high and compress the data streams composed of 0's and 1's runs efficiently. The variable to variable run length code 

algorithm is used to make changes to test vectors and can be adapted to compress pre-computed test sets to test system-

on-chip (SOC) embedded cores. 
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1. INTRODUCTION 

 

Due to the advent of integration in semiconductor 

technology, the electronics industry has experienced a 

phenomenal growth over the past two decades. Integrated 

circuits consist of various types of active and passive 

components that are manufactured to form systems on a 

single chip. The multiple modules and IP cores in a 

system-on-chip (SOC) wrap functions such as a 

processor, memory and various technologies such as 

CMOS logic into analog circuits. The large integrated 

devices are made up of millions of transistors and 

numerous hardware modules with the increase of 

technology. The SOC, however, presents many 

challenges such as increased test data, automatic test 

equipment (ATE) memory storage, transition time, test 

time, test power, and TAT. Test data is usually generated 

and stored on workstations. Individual types of 

application-specific integrated circuit (ASIC) require a 

more frequent download from workstation to ATE of test 

data. The ASIC test sets will be as large as gigabytes, and 

the time taken to upload the test data is more significant 

as it takes several minutes to hours to download. ATE's 

performance is affected by uploading test data time. To 

improve ATE's throughput, reducing the download time 

of test data is very important. A high volume of test data 

is directly proportional to higher memory and transition 

time. Because of limited bandwidth, memory, and I / O 

 

 

channels, the transfer of large test data between the ATE 

and chip is a bottleneck [1]. During data transfer from 

ATE to the test device (DUT), the Limited bandwidth 

increases the test time and test costs. Built-in self-test 

(BIST) and test-data compression are the techniques 

generally used to minimize SOCs test data size and test 

request time. Some of the problems are as follows when 

the test data increases: Limited space on ATE, Long 

upload time, Limited I / O bandwidth. Compression of 

test data is a promising solution for storing and 

transmitting compressed data from ATE to chip as well as 

speeding up the interaction between ATE and SOC 

during the test. Data compression is a data file size 

reduction procedure. The use of compression test data is 

to compress the pre-computed test set (TD) provided by 

the core vendor to a smaller test set (TE) and then stored 

in the memory of the automatic test device. Test data 

reduction reduces the size of ATE memory requirements, 

test time, and test power [2]. A new compression of test 

data is required to test the SOC core without exceeding 

memory, bandwidth and power limitations. Before and 

after scanning chains, additional on-chip hardware is 

added. An on-chip decoder will decompress the 

compressed memory test data and supply the original data 

to the test device. After decompression, the lossless test 

data compression reproduces all the bits [3]. Test vector 

compression consists of three categories as follows [4,5]: 

code-based schemes use a data compression technique to 

encode test cubes, linear-decompression-based schemes 
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decompress data using only linear operations [6], 

broadcast-based schemes transmit the same value to 

multiple scan chain. The code-based scheme approach 

partitions the pre-computed test sets (TD) into symbols 

and replaces a symbol with codeword by applying a 

compression algorithm to form encoded data. Decoding is 

done using a decoder that simply converts each codeword 

to the original data. In these methods, structural circuit 

information under tests (CUT) is not required but is well 

suited for IP core-based SOCs. The different categories 

are described as follows [7, 8] based on this scheme: run-

length-based codes, dictionary-based codes, statistical 

codes [9]. The Run-Length coded scheme is a highly 

effective data compression method for testing SOCs with 

a large number of IP cores in the current generation. In 

[10], the Simple run length code scheme is used to 

encode 0s runs into words with fixed length code. The 

architecture of the cyclic scan chain is used to increase 

the frequency of 0s by allowing different vectors to be 

applied and test cube reordered. The vectors of difference 

between test cubes are equivalent to two test cubes XOR 

and encoded with a run-length code. The Golomb-based 

compression technique is proposed to encode 0s runs with 

variable-length code words [11-13]. Here, each group is 

made up of specific identification symbols. The words of 

the variable length code are used to encode longer data 

runs efficiently. The frequency-directed run-length codes 

are similar to the Golomb codes suggested in [14,15] and 

variable group size is the difference in both methods. 

FDR is a variable to variable length encoded scheme and 

is a method of mapping variable length runs of 0s to 

variable length code words after application of the 

compression algorithm. The FDR codes are not very 

effective when runs of 1s are high on test sets. This 

coding scheme is effective for compressing data for 

several 1s and long runs of 0s, but it is inefficient for data 

streams consisting of both 0s and 1s runs. To decompress 

FDR code, the on-chip decoder must identify the prefix 

and the tail. FDR requires a powerful, high-range 

overhead decoder.  In order to overcome the decoder 

difficulty in FDR, the Huffman approach and FDR were 

combined to use the variable length pattern as input to the 

Huffman algorithm instead of using fixed length pattern 

[16, 17]. This therefore maintains the compression ratio 

due to the FDR process and uses limited Huffman to 

reduce the field overhead. In place of X-bits, 0s and 1s 

are filled to improve the occurrence of block frequencies 

[18]. Used to maximize the runs of 0s in the zero-fill 

algorithm, it fills the 0s instead of unspecified bits to 

reduce the scan-in test power [19]. The Extended 

Frequency Directed Run-Length Coding [EFDR] and 

Alternating Run-Length coding shown in [7, 20] defines 

that EFDR is ideal for test data streams consisting of both 

0s runs followed by 1s runs and vice versa. The 0s runs 

followed by 1 are encoded in the EFDR method as in 

FDR, but the difference here is an additional bit is added 

at the beginning of the FDR code word. The Alternating 

Run-Length code is a variable to variable length code, 

and here the test set is composed of alternating 0s runs 

and 1s runs. It is possible to identify the data runs by 

adding variable ' a ' to the core. When a=0, the run-length 

is considered to be runs of 0s, when a=1 is considered to 

be run-lengths of 1s. Only nine code words are used in 

[21] to encrypt the test data, and the technique of 

encoding is flexible. In order to obtain a higher 

compression ratio, variable nine coded compression uses 

a variable length block for each pattern. In [ 22,23], the 

multi-stage encoding technique, i.e. alternating 

frequency-directed equal run-length (AFDER) and run-

length-based Huffman encoding (RLHC), is proposed to 

reduce test data and application time. Together with nine-

coded compression technique, multi-stage encoding 

enhances the reduction of test data. A method called 

alternating variable run-length codes (AVR) in [24] 

reduces the test data, scan power consumption, test 

application time (TAT). In test sets up to 0s and 1s, 

proper mapping of don't care results in average and peak 

power consumption savings without slower scan clocks. 

Using extended variable length codes [25 ] to reduce data, 

time and memory, a test data compression scheme based 

on fixed to variable length coding with a limited number 

of code words is proposed. In many of the code-based 

compression techniques, the main objective is to reduce 

the volume of test data without giving any priority to the 

reduction of test power, for example, the test compression 

techniques outlined for [19, 20, 22, 26] focused mainly on 

the reduction of test data. In some of the independent 

compression techniques, for example, techniques detailed 

in [22, 27], the test power and test data are reduced.  

 

2. MAIN CONTRIBUTION 

 

A new method for testing embedded processor core using 

pre-computed test sets was presented in this paper based 

on variable to variable run length code. This method 

provides an efficient way of reducing the required test 

data and memory for automatic test equipment (ATE). By 

applying an algorithm to each variable test pattern to 

enhance the compression ratio, the compression 

technique efficiently compresses the runs of 0s and 1s. 

Here, a different code word pattern is applied to runs of 0 

followed by 1 and also to runs of 1 followed by 0, in 

order to determine whether the run length pattern is either 

run of 0's or run of 1's. If the test pattern is 0's followed 
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by 1's, and then the compressed code starts with a bit' 0.'If 

one runs the test pattern followed by 0, then the 

compressed code starts with a bit ' 1. 'The following is the 

organization of this paper. Section 2 explains the detailed 

compression technique of variable to variable run length 

and describes the process of data compression using an 

algorithm, flowchart and decompression. Section 3 

explains the ISCAS reference circuit experimental results 

obtained. 

 

Variable to Variable Run Length Code 

 

In this section, the detailed compression technique of 

variable to variable run length is presented and also 

describes the process of data compression using the 

architecture of algorithm, flowchart and decompression. 

 

Variable to variable run length code 

 

In this section, the detailed compression technique of 

variable to variable run length is presented and also 

describes the process of data compression using the 

architecture of algorithm, flowchart and decompression. 

Take TD = {t1, t2, t3 ... tn}, where n is the number of bits 

in pre-computed test sets (TD). Partition the test sets into 

variable run length patterns and use code word to 

compact the test sets. For both 0's runs and 1's runs, the 

code word will be different. Table 1 illustrates the 

variable-to-variable-length coding scheme encoding 

example. This method consists of two types of run length 

pattern (i.e. 0 runs followed by 1 runs followed by 1 runs 

followed by 0 runs). A code word is allocated separately 

for each type of runs. The code word for 0's runs in each 

group is the inverted code word data for 1's runs. The 

code word present in each group determines a 2n pattern, 

where n is 0, 1, 2, 3... According to the test data, 0's runs 

were considered as 0's strings followed by a bit' 1' and 1's 

runs were considered as 1's strings followed by a bit' 

0.'For instance, 000001 and 00001 are a 0's run sequence 

and their run length is 5, 4. 11111110 and 11110 is a 1's 

run pattern with a running length of 7, 4. The start bit of 

code word specifies which type of runs were processed 

and the code word length is used to identify the unit. The 

difference between the proposed method and other 

variable run length codes shows that separate code words 

are assigned for both 0's and 1's runs, since no prefix and 

tail are considered here. 

 

 
 

Figure 1. Block Diagram of Variable to Variable Run Length Coding 

 

Table 1. Example of Proposed Coding Scheme 

 

Group Run Code World Runs 

of 0’ s 

Code word Runs of 

1’s 

Code 

word 

Length 

B0 1 0 1 1 

B1 2 01 

00 

10 

11 

2 

B2 4 

5 

6 

7 

011 

010 

001 

000 

 

100 

101 

110 

111 

3 
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B3 8 

9 

10 

11 

12 

13 

14 

15 

 

0111 

0110 

0101 

0100 

0011 

0010 

0001 

0000 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

4 

B4 16 

… 

31 

011111 

… 

00000 

10000 

… 

11111 

5 

 

B5 32 

… 

63 

011111 

… 

000000 

100000 

… 

111111 

6 

…. ….. …. ….. ….. 

 

From Table 1 observation, the test pattern is divided into 

0's runs followed by 1 and 1's runs followed by 0. The 

test patterns are mapped to the appropriate code word 

based on run type and number of repeated bits or run 

length.  The group size is determined by the group 

number, and each group's members are equal to 2 m, 

where m is the group number, m = 0, 1, 2, 3 ... For both 

runs of 0's and 1's, the code word bit size is equal to n. A 

group B0 is made up of one (20) member. Note that B0 

output will be the pattern of 21(2n) (i.e.) 0 and 1. In B0, 

the run length test pattern is 1 (viz) 01 (0's runs) and 10 

(1's runs). The run length is 1 for 10 and the code word is 

1. The run length for 01 is 1 and the code word for 0 is 

inverted code word data 1. A B1 group is made up of two 

(21) members. Notice that B1 production will consist of 

22 patterns (i.e. 00, 01, 10, and 11). For B1, the run-

length test pattern is 2 (viz) 001 (0's runs) and 110 (1's 

runs).    The run length is 2 for 110 and the code word is 

10. The run length for 001 is 2 and the code word is 01, 

which is code word 10 inverted data. For patterns of 110 

and 001, the output is 10 and 01. If the running length test 

pattern is 3 (viz) 0001 (0's runs) and 1110 (1's runs). The 

run length is 3 for 1110 and the code word is 11. The run 

length for 0001 is 3 and the code word is 00 which is 

inverted code word 11 info. So, the output is 11 and 00 

for pattern 1110 and 0001. The running bit size of 2 and 3 

is the same. A group B2 is made up of 4 (22) members. 

Note that B2 will result in 23 patterns (i.e. 000, 001, 010 

... 110, 111). For B2, the run-length test pattern is 4 (viz) 

00001 (0's runs) and 11110 (1's runs). The run length is 4 

for 11110 and the code word is 100. The run length for 

00001 is 4 and the code word is 011, which is code word 

100 inverted data So the output for the pattern of 11110 

and 00001 is 100 and 011. If the running period test 

pattern is 5 (viz) 000001 (0's runs) and 111110 (1's runs).  

 

The run length for 111110 is 5 and the code word is 101. 

The run length for 000001 is 5 and the code word is 010, 

which is code word 101 inverted info. So, the production 

is 101 and 010 for sequence 111110 and 000001. The run 

length is 6 for 1111110 and the code word is 110. The run 

length for 0000001 is 6 and the code word is 001, which 

is code word 110 inverted information. The output for the 

pattern 1111110 and 0000001 is 110 and 001. The run 

length is 7 for 111111110 and the code word is 111. The 

run length is 7 for 111111110 and the code word is 111. 

The run length for 00000001 is 7 and the code word is 

000 that is inverted code word 111 data.       So the output 

for the pattern 11111110 and 00000001 is 111 and 000. 

The running bit size of 4, 5, 6 and 7 is the same. Up to m 

group numbers are continuing this cycle. Here, in order to 

reduce test data, a run of 0's and 1's is mapped to shorter 

code words.  Figure 2 demonstrates the example of 

encoding set to fixed run length encoding scheme. As an 

example from the benchmark circuit, the test vector is 

considered.  For each pattern, an algorithm is applied (see 

Table 1). From the encoding procedure example, note that 

for runs of 1's the start bit of code word is 1 and for runs 

of 0's the start bit of code word is 0. The original bits 

number is 55, while the compressed bits are 28. 

 

Data compression procedure using algorithm and flow 

chart 

 

The Algorithm 1 and Figure 3 describe the compression 

algorithm process using the proposed scheme of coding. 

If the test pattern is 1's run, then 1's run length is encoded 

as 2n code word. If the test pattern is running from 0's, 

then 0's run length is encoded as 2n code word inverted 

information. 2n code word is allocated for 2 m run length 

pattern as shown in the case where m = 0, 1, 2, 3 ... N= 1, 
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2, 3 ... The performance is assigned to the pattern of 20 

run lengths (01 or 10). 22 bit pattern is assigned as output 

for 21 run-length patterns (001 or 110, 0001 or 1110). 23 

bit pattern is allocated as output for 22 run length patterns 

(00001 or 11110, 000001 or 111111, 0000001 or 

1111110). This goes on up to m patterns and n word 

code.      

Algorithm 1.Variable to Variable Run Length Coding 

Algorithm   

1. Generate test vectors (TD) pre-computed. 

2. Let x be the vector of the input test, I'm the 

starting position, and i+1 is the next position. 

3. Find the TD's size. 

4. Attribute count = 0.    

5. If x [i] = = x [i+1], count multiple bits (count = 

count + 1). 

6. If the test pattern is 1's ride, give count interest. 

7. If test pattern is 0's, give count meaning 

transformation (0 as 1, 1 as 0) 

8. Case: 

 If 1 ≤ count < 2, assign count as 21 code word 

 If 2 ≤ count < 4, assign count as 22 code word 

 If 4 ≤ count < 8, assign count as 23 code word 

 If 8 ≤ count < 16, assign count as 24 code word    

 If 16 ≤ count < 32, assign count as 25 code word 

 If 32 ≤ count < 64, assign count as 26 code word 

9.    Repeat the algorithm till end of data stream 

10.  Calculate TC = Total compressed bits 

 

 
 

Figure 2. Example of encoding procedure of variable to 

variable run length code 

 

3. DECOMPRESSION ARCHITECTURE 

 

Figure 4 demonstrates the design of decompression, 

which is used to decompress the encoded data. The 

decoder is scalable and simple. The architecture is made 

up of finite state machines, clocks, and exclusive OR 

gates. The bit-in is the FSM's entry. The activate signal is 

used when the decoder is ready to monitor the encoded 

information. The signal shift is used to control the 

codeword to be passed via exor gate to the m-bit counter. 

Signal dec is used to decrease counter and rs is used to 

indicate counter reset status.  

 

 
                                            

 

Figure 3. Flow Chart of Variable to Variable Run Length 

Coding 

 

 
 

Figure 4. Conceptual architecture of Decompression 

 

To decode the code word into run-length pattern, the 

counter of log2 m-bits was used to count the length of the 

code word. The inc and dec1 are used to increase and 

decrease the counter and rs1 is used to indicate the end of 

counting. The output signal from the FSM controls the 

ex- or gate and indicates if the decoding of runs of 1's is 

complete. The signal v shows the valid output. Using 

FSM, the sequence is detected and FSM output is code 

word. The code word starts with a bit ' 0 ' for run type 0's 
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and the code word begins with a bit ' 1 ' for run type 1's. 

If bit-in is ' 0 ' the code word is a compressed run type 0's 

code and if bit-in is ' 1 ' it is a compressed run type 1 

code. 

The operation of the decoder is explained as follows: 

Signal en will initially be high and ready to receive bit-in 

data. If the input bit-in is 1, it will be 0 and if the input 

bit-in is 0, it will be 1. After the ex-or operation phase, 

when the signal shift is high, the data fed to the counter. 

If bit-in is 1, and a= 0, the execute type 1 code word will 

not be changed. It remains as the compressed original 

code. If the compressed code is 1011 ex-or 0, for 

example. The performance is going to be 1011. If bit-in is 

0, and a = 1, the execute sort 0 code word will be 

modified. This is because the corresponding pattern of 

run length can be achieved. For example, if the 

compressed code is 0100, then the output should be 11 

zeros followed by 1. However, 0100's length is 4 and this 

is 1's inverted code word runs info. In order to reach the 

correct output, the 0100 should be reversed again. For 

example, the output will be 1011 if the compressed code 

is 0100 ex-or with 1. In order to reach the correct output, 

the 0100 should be reversed again. For example, the 

output will be 1011 if the compressed code is 0100 ex-or 

with 1. The m-bit counter is then decreased; allowing 

signal dec to go high until rs was high. The signal v 

shows a valid output. The data from the ex-or gate output 

was moved to the m-bit counter until the counter value of 

log2m-bit was 0. So dec1 goes up and decrement of the 

counter. The rs1 signal went up when the counter log2m-

bit reached state 0. It implies moving the code word to the 

m-bit counter. The FSM outputs the 1's corresponding to 

the word code and shows the correct output of the signal 

v. The FSM output data such as 11110 is ex-or 0 when 

bit-in = 1 and a = 0. So the output is going to be 11110. 

This indicates that form 1 runs the decoded data. If bit-in 

= 0 and a = 1, the FSM output data like 11110 is ex-or 1. 

So that's going to be 00001 output. This indicates that 

type 0's are running the decoded data. 

 

Figure 5 shows the state diagram for the FSM used to 

classify sequence patterns. The FSM consists of six states 

in Figure 5. The process of State S0 is a 1-bit decoding 

word (i.e.) 1 or 0. The State S0 querS1 method is a 2-bit 

word decoding (i.e. 00, 01, 10, and 11). The state process 

S0 →S1→ is a 3-bit decoding word (i.e.) 000, 001 .... 

111. Meanwhile, 111. The state process S0 →S1 → is a 

4-bit decoding word (i.e. 0000, 0001 .... 1111. The State 

S0 →S2 →S3 →S4 process is a 5-bit word (i.e., 00000, 

00001) decoding code. 11111. The State S0S1 → S3→S4 

→S5 method is a 6-bit word decoding (i.e. 000000, 

000001). 111111. 

 

4. EXPERIMENTAL RESULTS 

 

Using ISCAS benchmark circuit, the algorithm was 

analyzed. The tests of compression were obtained using 

the compression technique of variable to variable length. 

The result is compared to other compression techniques 

such as multi-stage encoding technique [24], Golomb 

[20], FDR [15], EFDR [24], 9C [22], VIHC [18], EVRL 

[26] to show the efficacy of the proposed technique. The 

compression ratio is calculated using the formula CR 

(percent) = ((TD-TE)/TE) * 100 where TD is the pre-

computed test bits of certain benchmark circuits and TE 

is the encoded test data. Column 2 shows the compression 

ratio of the different benchmark circuits from Table 2. 

Compared to the original test vectors, the encoded bits are 

less. Therefore, the reduction of test data is accomplished 

through the use of the proposed algorithm. Note that, 

compared to the original test vectors; the encoded bits are 

smaller for all the benchmark circuit. The combination 

circuit of c2670 shows the highest 83.84 percentage. The 

average compression of different benchmark circuits is 

79.80%. The compression ratio relation with other 

compression methods is shown in Table 3.  The proposed 

algorithm shows a good compression ratio relative to 

other compression strategies from the analysis of Table 

3[28, 29]. 

 

Figure 5. Finite State Machine for Decompression 

Architecture 
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Table 2. Compression ratio for proposed technique 

 

Circuit Compression 

ratio 

Size of TD 

(bits) 

Size of TE 

(bits) 

No. of bits for 

Mintest 

c2670 83.84 20271 3276 10252 

c7552 81.12 25254 4767 15111 

s5378 78.25 23754 5167 20758 

s9234 82.68 39273 6804 25935 

s13207 75.25 165200 40885 163100 

s15850 80.68 76986 14870 57434 

s38417 76.93 164736 38010 113152 

s38584 79.80 199104 40224 161040 

  

Table 3. Comparison of compression ratio with other compression techniques 

 

 

5. CONCLUSION 

 

Compression of test data is the best solution for 

minimizing larger volume of test data. This paper 

presents a new method of compression and 

decompression to test embedded cores in SOC. The 

proposed method is set to fixed length coding technique 

and this method proves to be an efficient method of 

testing data compression to save space and time for 

testing. The runs of 0's and runs of 1's will have different 

code word in this technique, so that the run type can be 

defined when decoding. The structure of the 

decompression is presented. This technique leads to 

decreased test data, saves the requirements of ATE 

memory and channel capacity. The ISCAS benchmark 

circuit experimental results show that the method is very 

efficient in reducing test data. 
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