
 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-8

Network Security Risk Assessment based on Critical Attack Graph

Evaluation

Munya Saleh Ba Matraf
1
, Mohamed Ali Saip

2

1
Department of Computer Engineering, Faculty of Engineering, Hadhramout University,

Mukalla, Yemen.
2
Human-Centered Computing Research Lab, School of Computing, Universiti Utara Malaysia, 06010 Sintok,

Kedah, Malaysia

Abstract: As a network system dependencies increase, such systems are vulnerable due to some software

misconfigurations, software flaws, and operating system service malfunctions and are exposed to various attacks.

Network managers frequently rely on Attack Graphs to visually perform network systems security risk assessment. The

Attack Graphs are very cumbersome to comprehend visually as they develop exponentially when network size rises or

when vulnerabilities in a network increase in the number of hosts. This paper addresses the Attack Graph generation's

scalability problems by leveraging the context of graph theory. MulVAL and Nessus scanner instruments were used

respectively for Attack Graph generation and mapping of network data. A computational algorithm has been formulated

which is capable of handling cycles. A valid path detection algorithm was also formulated to determine the most critical

and valid paths required for the security risk assessment of the network purpose within an Attack Graph. The results

showed that the Attack Graphs' proposed model reduces redundancy. This will help the security administrator make

reasonable decisions on the network systems' security risk management.

Keywords: Graph, Cycles, Critical Path, Attack, Risk Management, Security

I. INTRODUCTION

In today's economy and national infrastructures, computer

networks play significant roles. They are increasingly

dependent on them in multiple areas of economic,

financial, company, etc. Network systems are used for

data communication with distinct software, services, and

configuration operating together dependently. These

systems are vulnerable and every year the vulnerabilities

increase. Network security has, therefore, become one of

the major challenges these days and needs to be evaluated

to protect the network from any form of malicious

intrusion. Prevention of intrusion is one of the efficient

methods for improving network security and includes

eliminating the network's cause of assaults or

vulnerabilities. Prevention of intrusion begins with

detecting possible attacks in the networks or having

knowledge of how attackers can exploit the vulnerability

of the network to break the security and obtain the goal of

the attack before hardening the network.

An attacker can exploit multiple vulnerabilities in a

network before achieving a specific goal, such as

receiving root privilege on a server. Such attacks are

known as multi-stage attacks. Attack Graph is a powerful

tool that can provide information on the relationship

between different vulnerabilities that the attacker can

exploit and the privileges that the attacker gains as a

result of exploiting those vulnerabilities. Attack Graph

demonstrates the possible sequence or path of malicious

actions that can be followed by an attacker to penetrate

the network and obtain certain privileges. These

vulnerabilities may lead to inappropriate network system

configuration or the presence of a particular version of a

software product.

Attack Graph takes into consideration the number of

vulnerabilities on the target network, the conditions

defining accessibility among vulnerable software

instances, and the level of detail in vulnerability

modeling. All of these influence the Attack Graph's size.

This implies the larger the size of the network, the larger

the Attack Graph size. The more vulnerabilities that exist

on the target network, the bigger the Attack Graph's size.

This means that it becomes harder to assess and automate

their vulnerability to attack as the hosts in a network grow

in size so that the Attack Graph becomes very big and

complicated. Therefore Attack Graph's scalability

problem is necessary and necessary in network systems

for network hardening and network security risk

management purposes.

II. RELATED WORKS

Attack Graph generation was first performed using the

red team strategy; this was susceptible to mistakes and

very tedious because it was based on the manual effort

that was not appropriate for mild network size. Different

methods were proposed to generate Attack Graphs

automatically. Phillips and Swiller (1998) proposed the

concept of Attack Graph, and Swiller et al (2001)

presented a tool for generating Attack Graph. Attack

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-9

templates were used in their model to represent generic

steps in known attacks. Dacier et al (1996) proposed the

notion of privilege graph, after which Ortalo et al (1999)

illustrated the use of the privilege graph in network

security. However, the Attack Graph could not be

computed because even with only 13 vulnerabilities, they

turned out to be too big.

NuSMV was used to calculate the multi-stage multi-host

Attack Graph in Sheyner et al. (2002) and Sheyner

(2004), a model checker. Ammann et al. (2002) used the

monotonicity assumption to address the Attack Graph-

related scalability issue and was able to successfully

reduce the polynomial computational cost. Jajodia et al.

(2005) used the algorithm described by Ammann et al.

(2002) to implement an embedded, topological strategy to

vulnerability assessment. Topological Vulnerability

Analysis (TVA) was called this approach.

In Noel and Jajodia's work (2004), the various parts of the

exploit-dependent Attack Graph generated by TVA in

Jajodia et al. (2005) have collapsed to make visual

understanding more interactive. Ammann et al. (2005)

used an algorithm to calculate the suboptimal attack route

between each pair of hosts in a network. This job could

discover the highest privilege that each host can gain as

the attacker exploits the network's vulnerabilities. Man et

al. (2008) proposed a breadth-first-generation algorithm

by adding the attack step and probability of achievement

to restrict the graph scale. Bhattacharya et al. (2008)

suggested an algorithm for the identification of a generic

attack route and showed that the routes of the attack are

scalable. Tang et al. (2007) provided a generation model

based on data mining of historic intrusion alerts.

According to Hsu and Lin (2008), Attack Graphs are

faced with a combination explosion in terms of their

complexity and are therefore always applied to smaller

network systems whereas consideration of large networks

is subjective to some system modifications (Noel and

Jajodia, 2004). Noel and Jajodia (2009a) used a model

checking strategy to list the attack chains to link the

privilege of the initial attacker to the final objective of the

assault. This method also improves exponentially as the

network size rises due to a large number of attack states

being enumerated. The assumption of monotonicity in the

logic used during the Attack Graph generation, however,

reduced complexity to polynomial. In consideration of a

quadratic number of hosts, the complexity of such graphs

was reduced.

Noel and Jajodia (2009b) grouped networks into single

domains with no restriction of connectivity between hosts

and tight security protection rules were applied to such

domains. This approach aimed to reduce the Attack

Graph's complexity. In this job, the topology proposed

decreased the complexity of single domain consideration

to linear. Depending on the number of protected domains,

the number draws to a quadratic (as the number

represents the domain number, not the host). However,

the graphs generated with this strategy ranged from

hundreds to tens of thousands of hosts that were produced

within minutes without visualizations. Hong et al. (2013)

provided a scalable model of attack representation using a

method of logic reduction. The work proposed a method

of simplifying the attack tree based on the tree's logical

expression. It showed an equivalent safety assessment

before and after reducing the Attack Graph's logic

expressions. The methods of logic reduction were used to

automate the building as well as to decrease the size of

the attack trees. The complexity of the attack trees

generated was analyzed and simulation was performed

using different network topologies to evaluate the

performance of the logic reduction techniques. The

complexity analysis conducted in the job showed that the

Attack Graph size was lower than the complete Attack

Graphs after the logic reduction. It also described the

trade-off between the moment the tree was built and the

use of memory.

Lee et al. (2009) proposed a mechanism for Attack Graph

management using a divide and conquer approach. A

large Attack Graph was converted into multiple sub

graphs to enhance the efficiency of the Attack Graphs

risk analyzer. The outcome showed that when k time

complexity algorithms are used with an Attack Graph

with n vertices, a division with c overhead vertices would

decrease the workload from nktor(n + c)k. The workload

decrease will allow the risk assessment of the big Attack

Graph to become more scalable and practical. The

approach to divide and conquer presented in this work did

not require any adaptation of methods of risk analysis.

Risk units, also known as light graphs, have been used to

reduce the analyzers' workloads.

Ma et al. (2010) provided a scalable, two-way search

approach for Attack Graphs generation. The target

network used in this job was based on four levels:

network service, host system, security system, and host

accessibility. In this research, a technology that can

automatically obtain the parameters of the accessibility of

the host was provided. This technology helped to

automatically model a large-scale network and also

reduced the spatial complexity of the proposed algorithm

in this work. To aggregate and generate the host Attack

Graph whose number of nodes and edges increase

linearly with the number of hosts in the network,

vulnerabilities, and attacks were linked to specific hosts

according to the predefined rules of the network system.

Several vulnerability identification and measurement

techniques are available, such as the Vulnerability Rating

and Scoring System (VRSS) and the Common

Vulnerability Scoring System (CVSS) (Scarf one and

Mell 2009). These systems of scoring are based on known

vulnerability experiences. For example, before

successfully exploiting the vulnerability, the level of

privileges an attacker must possess the conditions that are

beyond the control of the attacker that must exist to

exploit the vulnerability or a user's requirements other

than the attacker to successfully compromise the

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-10

vulnerable services. The vulnerabilities will then be

assigned numeric scores. While these approaches focus

on individual vulnerabilities, as each vulnerability may be

scored low, a network security expert may be misled.

MulVAL has been developed based on multi-host, multi-

stage vulnerability analysis. It's a Kansas State University

open-source project. Data log has been used to describe

networks and their safety rules and conditions. The rule

files are scanned by the execution engine of Prolog (Ou

(2005); Ou et al (2006); Ou et al (2005)).

III. CYCLES IN ATTACK GRAPHS

Attack Graph is a cycle graph that is directed. The effect

of cycles on Attack Graphs is a major complication in

Attack graph models. There are different types of cycles

in Attack Graphs which could naturally exist. These

cycles create different problems. Figure 1 presents

various cycle cases that have been considered in this

paper. The interaction formed the cycles in Figure 1 (Ou

et al, 2006).

The logic programming language data logs are used by

MulVAL Attack Graph to describe the networks and their

safety rules and conditions. The conditional nodes (c1,

c2,..cn) are OR-decomposed nodes, while the AND-

decomposed nodes are the exploit nodes (e1, e2, e3., en).

Some cycles can be removed from the Attack Graph

completely while others can't. Removal of cycles depends

on whether attackers can ever reach any of the exploits or

conditions inside the cycle. This implies that a cycle can

be removed if an attacker cannot reach any of its exploits

or conditions otherwise such a cycle is irremovable from

the Attack Graph.

(a)

(b)

(c)

(d)

Figure. 1 Different case of Attack Graph Cycles

considered

The cycle can be reached by a conditional node c1 in

Figure 1(a). One of the e1, e2, e3 exploit nodes can

achieve this node. The operating node e4 relies on c1, c2

on e4 and e3 on the conditional node c2. This means that e4

and c2 can be reached as they rely on c1 if the situation

node c1 is satisfied. If it is possible to reach c2, then e3 can

be successfully exploited. This Attack Graph cycle

example cannot be removed as it is possible to reach all

attack nodes and privileges during the attack. Figure 1(b)

only shows a cycle similar to (a) that the conditional node

c3 now depends on the attack node e3. It is possible to

reach the cycle via a conditional node c1. c1 is an OR-

node that can be reached through any of the e1, e2, e3.

Attack node e3 requires both c2 and c3 nodes before being

successfully exploited. It is also possible to reach the two

attack nodes in the cycle, as both depend on c1. The

Attack Graph cannot remove this type of cycle. Figure

1(c) shows a different Attack Graph cycle case. It is

possible to reach the cycle through the attack node e1. e1

is an AND-node that requires c1, c2, and c4 predecessors

to be satisfied before it can be used successfully. c3 and e2

depend on e1 and c4 attack node as well as e2. It can be

seen that both e1 and c4 nodes depend on each other and

therefore cannot be reached during the attack. An Attack

Graph can remove this type of cycle. Figure 1(d) shows a

similar cycle of (c) with the attack node e3 required to

satisfy the conditional node c4. The attack node e1 needs

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-11

the satisfaction of all nodes c1, c2, and c4 before

exploiting the attack. Before it can be achieved, the

conditional node c4 requires e2 or e3 as a precondition.

Nodes e2 and c3 all rely on the exploit node e1, but c4 is an

OR node that can either be affected without e2 based on

the external exploit node e1. This implies that by using

the external node e3, the relationship that exists between

nodes c4 and e1 can be broken. Therefore, during an

assault, all the privilege and attack nodes can be reached.

The Attack Graph cannot remove this cycle.

IV. PROPOSED APPROACH

This paper's proposed approach leverages graph theories.

The approach can be divided into three parts: Attack

Graph generation, Attack Graph identifying and

removing cycles in the Attack Graph and Attack Graph

determining valid attack paths. The detailed flowchart

diagram of the proposed approach, i.e. the process of

generating the Attack Graph and scaling the Attack Graph

generated, is presented in Figure 2, the details are further

described in the following procedure.

i. OAUNET was chosen as an issue domain (i.e.

network environment).

ii. Using the Nessus scanner tool, the mapping of

network connections and domain knowledge of

vulnerability information were identified. The

mapping of the network connection involved

information that was available throughout the target

network hosts. This includes topology or

connectivity information (unique host identifiers

such as host IP and hostname), services running on

the hosts, and vulnerabilities in operating systems,

software, and services that have security flaws in the

network hosts. Besides, the vulnerability information

domain knowledge was identified using NVD. This

shows the dependency or relationship between the

various vulnerabilities in the target network.

iii. The report of Nessus vulnerability scanning has been

exported as .nessus file. In the Nessus scanning result

(.nessus), the MulVAL takes as input, which is then

translated into MulVALdatalogs.

iv. The Attack Graph was created using the MulVAL

framework, in this paper the details were handled

offline.

v. All cycles were identified in the generated Attack

Graph and it was decided whether or not to remove

them using the proposed cycle handling algorithm in

Figure 3 (Cycle Detection and Handling).

vi. In Figure 4 (Attack Graph Scaling) the Attack Graph

was scaled using the proposed Valid Path Algorithm.

4.1 Proposed Cycle Handling Algorithm

An Attack graph is a directed cyclic graph (DCG). It

contains some set of strongly connected components

where there are strongly connected subsets of the vertices

(exploits and conditions). Johnson (1975) introduced an

algorithm capable of detecting all possible cycles in a

directed graph. The detection of cycles of Attack Graphs

will improve this algorithm. The improved algorithm

shown in Figure 3 demonstrates how cycles can be

treated in Attack Graphs. This algorithm uses the directed

cyclic Attack Graph as input and treats the cycles in the

Attack Graph as heavily connected elements. Each cycle

is subject to exploiting reach ability in the set of strongly

connected components found in the attachment graph.

This is important to determine whether or not the cycle is

removable.

Figure 2. Flow chart

However, those cycles that cannot be removed within the

Attack Graphs are subjected to a Feedback arc test, where

edge sets can be removed to convert the directed cyclic

graph to a directed acyclic graph.

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-12

4.2 Proposed Valid Attack Path Detection Algorithm

The Attack Graphs generated by previous approaches do

not scale as node size increases in a network system. A

node may have hundreds of vulnerabilities, which may

also constitute the Attack Graph's exponential growth.

Such Attack Graphs are difficult to visually interpret in a

business network for network system security risk

management. To address these scalability issues of Attack

Graphs generated, this research proposed in Figure 4 a

forward search-based algorithm that identifies the Attack

Graphs' valid attack paths. The valid Attack Graph paths

are easier and faster to understand than the Attack Graphs

generated.

Figure 3. Algorithm - Handling cycles in Attack Graphs

Figure 4. Valid Attack Path Detection Algorithm.0

V. RESULT & DISCUSSION

5.1 Attack Graph Generation

Figure 5 shows the Attack Graph with 103 nodes being

generated. For better visualization, it was rendered with

numeric values assigned to each node. This MulVAL

Attack Graph's AND nodes are shaped as ellipses, while

the diamond-shaped OR nodes and vulnerability nodes

are inboxes. The leaf nodes are the configurations that

usually have no ancestor on each host of the network

system. Based on Figure 5's critical observation, it was

noted that the Attack Graph generated is quite large and

too complex to understand.

5.2 Directed Acyclic Graph Generation

JAVA programming language used Netbeans IDE 8.0.2

running on Java Development Kit (JDK) 1.8.0 Update 25

to implement the algorithm in Figure 3. The algorithm

has been tested with the Attack Graph generated in Figure

5. In this Attack Graph, there are 153 cycles. All the

cycles found in this Attack Graph are listed in the

Appendix, but all these cycles are not removable,

unfortunately. In the feedback arc set, the Attack Graph

included 7 edges. This set of edges includes edges that

could be removed in the Attack Graph to create a

directional acyclic graph. Table 1 shows the list of the 7

edges. The removal of these edges produced the Directed

Acyclic Graph required as shown in Figure 6.

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-13

Figure 5. The Generated MulVAL Attack Graph (Node

numbering)

Table 1. The Feedback arc Set of the generated Attack

Graph

S/N Edges

1 96->95

2 25->13

3 83->82

4 34->13

5 2->1

6 14->13

7 71->1

5.3 Scalable Attack Graph Generation

The Figure 4 algorithm takes as input the Directed

Acyclic Graph, the condition of the initial attacker and

the goal of the final attacker. This algorithm's output is a

collection of valid routes that created the Attack Graph

required to manage security risk. The implementation of

this algorithm was tested using Figure 6 presented with

the Directed Acyclic Attack Graph.

Figure 6. Generated Directed Acyclic Attack Graph

The initial condition of the attacker is node 22, which

presents the attacker locating the Internet to exploit the

remote network. Nodes 1, 6 and 13 are the ultimate goal

of the attacker (to execute some exploit codes on each

target host). This work assumes that an attacker

independently exploits each of the final goals. Figure 7

shows the results of this algorithm being implemented

with Figure 7(a) and Figure 7(b) showing the valid paths

using nodes 1 and 6 respectively as the final targets for

the attack. There is however no valid path from the initial

condition goal of the attacker (node 22) and node 13

attack goal.

The final Attack Graph generated by merging the

subgraphs in Figure 7(a) and (b) is presented in Figure 8.

In terms of the graph's overall size, the final output is

more scalable and easier to interpret or understand than

the one generated in Figure 5. Furthermore, the MulVAL

Attack Graph in Figure 5 has a total logical size of 2.29

MB, with a total size of 1.86 MB the directed acyclic

Attack Graph is shown in Figure 6 is lighter. The total

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-14

logical size of the enhanced Attack Graph generated from

this study as shown in Figure 8 is 0.97 MB.

VI. CONCLUSION

This paper presented a graph-theoretical approach to

address Attack Graphs' scalability issues. For detecting

and managing the cycles that are always present in Attack

Graphs, an algorithm was formulated. These cycles can

be removed or not, depending on whether an attacker can

reach the exploit node in the cycle. This paper also

presents a valid algorithm for attack path detection that

can be used to determine an Attack Graph's most critical

and valid path. The proposed strategy will improve

network system safety evaluation that is visually

dependent on Attack Graphs.

This reduces the problem of scalability of such an Attack

Graph that is growing exponentially

(a)

(b)

Figure 7. Valid Attack Paths from the initial attacker's

condition

Figure 8. Enhanced Attack Graph

Increasing network host size and vulnerability. It will

thus enable the network managers to make quick

decisions during such vulnerability assessment.

REFERENCES

[1] Ammann P., Wijesekera D., and Kaushik S.,

(2002) “scalable, graph-based network vulnerability

analysis”, In Proceedings of the 9th ACM Conference on

Computer and Communications Security (CCS), ACM

Press, Washington, USA, November 18-22, 217-224.

[2] Ammann P., Pamula J., Ritchey R., and Street J.,

(2005) “A host-based approach to network attack

chaining analysis”, In Proceedings of the 21st Annual

Computer Security Applications Conference (ACSAC

’05), IEEE Computer Society, Tucson, Arizona,

December 5-9, 10

[3] Bhattacharya S., Malhotra S., and Ghsoh S., (2008)

“A scalable representation towards attack graph

generation,” 2008 1st International Conference on

Information Technology,

DOI:10.1109/INFTECH.2008.4621611. 1–4.

[4] Dacier M., Deswarte Y., and Kaaniche M., (1996).

“Quantitative assessment of operational security: Models

and tools,” 96493, Tech. Rep., [Online]. Available:

http://citeseer.ist.psu.edu/366225.html

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 5, Issue No: 1, September 2019

Copyright © 2019 Mélange Publications EC-15

[5] Eades, P., Lin, X., & Smyth, W. F. (1993). A Fast

and Effective Heuristic for the Feedback Arc Set

Problem. Information Processing Letters, 47(6), 319-323.

[6] Hong, J. B., Kim, D. S., & Takaoka, T. (2013).

Scalable Attack Representation Model Using Logic

Reduction Techniques. 12th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), 2013,. 404-411.

[7] Hsu, L. H., & Lin, C. K. (2008). Graph theory and

interconnection networks. CRC press.

[8] Jajodia S., Noel S., and O‟Berry B., (2005),

“Topological analysis of network attack vulnerability”, in

Managing Cyber Threats: Issues, Approaches and

Challenges, V. Kumar, J. Srivastava, A. Lazarevic (eds.),

Springer, 2005.

[9] Johnson, D. B. (1975). Finding All the Elementary

Circuits of a Directed Graph. SIAM Journal on

Computing, 4(1), 77-84.

[10] Lee, J., Lee, H., & In, H. P. (2009). Scalable

Attack Graph for Risk Assessment. In International

Conference on Information Networking, 2009 (ICOIN

2009). 1-5

[11] Ma, J., Wang, Y., Sun, J., & Hu, X. (2010). A

Scalable, Bidirectional-Based Search Strategy to

Generate Attack Graphs. In IEEE 10th International

Conference in Computer and Information Technology

(CIT), 2010, 2976-2981.

[12] Man D., Zhang B., Yang W., Jin W., and Yang Y.,

(2008) “A method for global Attack Graph generation,”

IEEE International Conference on Networking, Sensing

and Control, 2008. ICNSC 2008, 236–241.

[13] Noel S., and Jajodia S., (2004)“Managing Attack

Graph Complexity through Visual Hierarchical

Aggregation”, In Proceedings of the ACM workshop on

Visualization and data mining for computer security

(VizSEC/DMSEC „04), ACM, VA, USA, October 29,

2004, 109–118

[14] Noel, S., &Jajodia, S. (2009a). Proactive Intrusion

Prevention and Response via Attack Graphs. in Practical

Intrusion Analysis: Prevention and Detection for the

Twenty-First Century, R. Trost (ed.), Addison-Wesley

Professional, 2009

[15] Noel, S., &Jajodia, S. (2009b). “Advanced

Vulnerability Analysis and Intrusion Detection through

Predictive Attack Graphs,” Critical Issues in Command,

Control, Communications, Computers, Intelligence (C4I),

Armed Forces Communications and Electronics

Association (AFCEA) Solutions Series, Lansdowne,

Virginia, May 2009.

[16] Ortalo R., Deswarte Y., and Kaaniche M. (1999),

“Experimenting with quantitative evaluation tools for

monitoring operational security,” IEEE Trans. Software

Eng, 25(5), 633– 650,

[17] Ou, X., (2005). A Logic-Programming Approach

to Network Security Analysis. PhD thesis, Princeton

University, 2005.

[18] Ou, X., Boyer, W. F., & McQueen, M. A. (2006).

A Scalable Approach to Attack Graph Generation. In

Proceedings of the 13th ACM Conference on Computer

and Communications Security.336-345.

[19] Ou, X., Govindavajhala, S., &Appel, A. W.

(2005). MulVAL: A Logic-based Network Security

Analyzer. In 14th USENIX Security Symposium, 2005.

[20] Phillips C. A. and Swiler L. P.(1998). “A graph-

based system for network-vulnerability analysis,”. In

NSPW ’98: Proceedings of the 1998 workshop on New

security paradigms, 71–79.

[21] Scarfone K. and Mell P.(2009) “An Analysis of

CVSS Version 2 Vulnerability Scoring,” in Proceedings

of the 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, ser.ESEM ‟09.

Washington, DC, USA: IEEE Computer Society, 516–

525.

[22] Sheyner O., Haines J. W., Jha S., Lippmann R.,

and Wing J. M., (2002) “Automated generation and

analysis of Attack Graphs,” in IEEE Symposium on

Security and Privacy, 273–284.

[23] Sheyner O. M.,(2004) “Scenario graphs and Attack

Graphs,” Ph.D. dissertation, Carnegie Mellon University,

2004.

[24] Swiler L., Phillips C., Ellis D., and Chakerian

S.,(2001) “Computer Attack Graph generation tool,” in

Proceedings of DARPA Information Survivability

Conference and Exposition II (DISCEX’01), 2001. DOI:

10.1109/DISCEX.2001.932182

[25] Tang Li Z., Lei J.,Wang L., and Li D.,(2007) “A

data mining approach to generating network attack graph

for intrusion prediction,” Fourth International Conference

on Fuzzy Systems and Knowledge Discovery, 2007.

FSKD 2007., 4, 307–311.

