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Abstract: A newly established method, called the Exchange Market Algorithm (EMA), is provided to identify the 

parameters of the three-phase induction motor from the manufacturing information. For the suggested technique, input 

data such as rated output power, beginning torque, breakdown torque, complete load torque, power factor and 

effectiveness at rated output energy are needed. Using the squared error between the identified and the manufacturing 

data as the objective function, the parameter identification problem is assigned to an optimization process where the 

parameters of the double cage model are identified to minimize the defined objective function. The EMA algorithm is 

used to iteratively minimize the objective function.Two sample engines tested the EMA strategy. The achievement of the 

EMA algorithm is contrasted with the technique of classical parameter determination (CPD) and other techniques of 

optimization, including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Simulation findings show the 

ability of the suggested method to capture the real values of the machine parameters and the dominance of the outcomes 

obtained using the EMA over other methods to parameter identification. 

 

Keywords: Double-cage model, Exchange market Algorithm, Manufacturer data, Optimization techniques, Parameter 

determination. 

 

 

NOMENCLATURE 

 

Vph Stator voltage per phase (V) 

I1 Stator current per phase (A) 

I2 Rotor current per phase (A) 

R1 Stator resistance per phase (Ohm) 

X1 Stator leakage reactance per phase (Ohm) 

Xm Magnetizing reactance per phase (Ohm)  

R2 Rotor resistance referred to stator side (Ohm) 

X2 Rotor reactance referred to stator side (Ohm) 

R21 Inner cage rotor resistance (Ohm)   

R22 outer cage rotor resistance (Ohm) 

X21 Inner cage rotor leakage reactance(Ohm) 

X22 Outer cage rotor leakage reactance (Ohm) 

Y1 Stator admittance (Mho) 

Ym Magnetizing admittance (Mho) 

Y21 Inner cage rotor admittance (Mho) 

Y22 Outer cage rotor admittance (Mho) 

Ytot Total admittance (Mho) 

Tst(mf)  Manufacturer starting torque (Nm) 

Tmax(mf) Manufacturer maximum torque (Nm) 

Tfl(mf) Manufacturer full-load torque data (Nm) 

Tmax(d) Determined maximum torque (Nm) 

Ifl(mf) Manufacturer full-load current (A) 

 pffl(mf) Manufacturer full-load power factor data 

Vth  Thevenin’s equivalent voltage (V) 

Rth  Thevenin’s equivalent resistance (Ohm) 

Xth Thevenin’s equivalent reactance (Ohm) 

ωs Motor’s angular velocity (rad /sec) 

s Slip 

smax Slip at which maximum torque occurs 

ηfl Full load efficiency (%) 

Pfl Rated power (W) 

Prot Rotational losses (W) 

X m.f.  Manufacturer data of performance 

 characteristic X 

Xd  Determined data of performance characteristic 

 X 

  A function that returns the real part of the 

 given   complex number 

Xmin , XmaxMinimum and maximum limits of the 

 equivalent circuit parameters 

ni  n
th

 person of the first group  

nj  n
th 

person of the second group  

r   random number within [0, 1] 

)2(group
jpop

 j
th 

member of the second group 

)1(group
,i1pop

 members of the first group 

)1(group
,i2pop

 members of the second groupr1 and r2 

  random numbers 

 nk  n
th

 member of the third group  
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)3(group
kpop

 k
th

 member of the third group and 

Sk  share variation of the kth member of 

  the third group 

1tn
  share value added randomly to some 

shares  

1tn
  total shares of member t  

ytS
  shares of the t

th
 member  

   information of exchange market 

1   risk level for each member of the  

  second group  

popt
  number of the t

th
 member in  

  exchange market 

popn
  number of the last member in  

  exchange market 


  constant coefficient for each member  

g1   common market risk amount 

Itermax  maximum iteration number  

max,1g
, max,2g

 maximum and minimum values of  

  risk in market respectively 

3tn
  share value added randomly to some 

  shares  

sr   random number between -0.5 and 0.5 

2g
  market variable risk in third group 

 

1. INTRODUCTION 

 

The equivalent circuit parameters of three-phase 

induction motors are usually determined through the trials 

of no-load, locked-rotor and stator resistance.  The 

parameter values determined by this classical method can 

reveal significant variations in the entire slip spectrum 

ranging from 0 to 1. 

Using the double-cage model, the performance features of 

squirrel cage induction devices can be acquired. Deep and 

narrow rotor bars have the same torque-speed features as 

double-cage rotor. Single-cage rotors should therefore be 

modeled as a double-cage model. 

The linear parameter identification methods were used to 

determine the equivalent circuit parameters of a three-

phase induction machine. 

The problem has also been solved by the sophisticated 

method for non-linear parameter determination[1 ]. A 

study on different techniques of detection of parameters 

has been discussed [2]. An simple technique for 

calculating induction motor parameters using IEEE 

standard 112 techniques has been discussed[3]. To 

determine the corresponding circuit parameters, no-load, 

blocked-rotor and overload experiments are performed. In 

this technique, the mearuring of torque values is not 

utailized. The standard strategy to determining the 

equivalent circuit parameters of the induction motor from 

the accessible information was discussed[4][5]. These 

methods estimate the parameters of the machine model 

and then perform the sensitivity analysis with regard to 

the parameters of the circuit to match the information 

provided. A fresh parameter determination method for 

induction motors has been discussed in [ 6 ]. In this 

technique, manufacturer information such as name plate 

information and motor performance features were used to 

determine the double cage induction motor parameters. 

Online techniques for stator resistance and rotor 

resistance identification of an induction engine were 

suggested by Vukadinovic et al.[7 ] and Mehazzem et 

al.[8 ] using model reference adaptive system principle 

and synchronous resonating filtering method. A novel 

adaptive observer based on Lyapunov is provided 

concurrently to predict inner fluxes, key loss and rotor 

resistance of induction motor[9]. A flux observer is 

extracted from the induction motor model, including the 

stator core loss resistance, and the observer's stability is 

demonstrated based on a Lyapunov function. 

The developmental algorithm[10 ], GA[11-15 ], adaptive 

GA[16 ], artificial neural network (ANN)[17][18 ], 

PSO[19 ], IA[20 ] and differential evolution[21 ] were 

used to identify induction engine parameters. 

The algorithm for the exchange economy (EMA) was 

first suggested by Ghorbani and Babaei[22]. It is 

influenced by the stock market in which shareholders 

purchase and sell all kinds of stocks under balanced and 

oscillating market circumstances. This algorithm utilizes 

two search operators and two absorbents. These operators 

enable EMA to solve the issues of exploration and 

exploitation. In this document, the EMA system is used 

from the manufacturer information to estimate the 

corresponding circuit parameters of the double-cage 

induction engine model. 

The suggested EMA technique is being tested on two 

sample engines of distinct dimensions. The parameters 

acquired by the EMA technique are then used to forecast 

engine start, breakdown and full-load torques and 

compare with the respective values provided by the 

manufacturer. 

 

2.  INDUCTION MOTOR MODEL 

 

Figure 1(a) indicates a single induction motor's equivalent 

circuit. The equivalent circuit is used to define engine 
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features in the ordinary working region, but gives more 

mistake when beginning. A double-cage rotor model is 

used to get better beginning features. The equivalent 

circuit frequently used for such a model is shown in 

Figure 1(b). There are seven distinct parameters in this 

circuit. The internal cage is represented by parameters R1 

and X1, and the outer cage is represented by R2 and X2. 

 

2.1 Single-Cage Model Formulation 

 

The problem formulation utilizes information from the 

starting torque, peak torque, complete load torque and 

complete load power factor maker to define stator 

strength, rotor resistance, stator leakage reaction, rotor 

leakage reaction, and magnetizing leakage reaction 

parameters.

 
(a) 

 
(b) 

 

Figure 1. Equivalent circuit of an induction motor 

(a) Single-cage rotor model 

(b) Double-cage rotor model 

 

The objective function is defined by Minimize 
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The constraints considered for single-cage model 

parameters determination are 

 

maxi,XiXmini,X 
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2.2  Double-Cage Model Formulation 

 

The issue formulation uses manufacturer information 

from the starting torque, peak torque, complete load 

torque, complete load present and complete load power 
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factor to define the parameters of the profound bar circuit 

model.The objective function is defined as Minimize 
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The following equations are used as constraints: 
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3.  EXCHANGE MARKET ALGORITHM: A 

BRIEF OVERVIEW 

 

EMA, first implemented by Ghorbani and Babaei[34 ], is 

a flexible, robust, population-based stochastic 

optimization algorithm with intrinsic parallelism. It is 

driven by stock market human behavior in which 

shareholders trade shares in balanced and oscillating 

market circumstances. This algorithm utilizes two search 

and absorbent operators in ordinary and oscillation modes 

respectively. In EMA, optimum solution is considered to 

be one that a shareholder population is searching for. Each 

person in this population is called a shareholderThe people 

of the searcher group and the absorbent group are 

accountable for enhancing the algorithm's exploration and 

exploitation capabilities. 

 

3.1 Exchange Market in Normal Mode 

 

The investors attempt to maximize their profit using the 

expertise of the elite investors in the ordinary situation of 

the exchange economy. Each shareholder in the 

population is ranked according to the fitness function.  

 

3.1.1 Shareholders with High Ranks 

 

These shareholders do not alter their stocks without 

carrying out any danger and trade to preserve their ranks. 

This group of investors makes up 10-30% of the 

workforce. 

 

3.1.2 Shareholders with Average Ranks 

 

These shareholders do not change their stocks in order to 

maintain their ranks without carrying out any risk and 

trade. This group of investors make up 10-30 percent of 

the workforce. 
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3.1.3 Shareholders with Weak Ranks 

 

This group of shareholders arranges 20-50 percent of the 

population. The representatives of this community use the 

distinctions of elite and medium shareholders ' share 

values with their share values. This group's population is 

provided in the following equation.
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3.2 Exchange Market in Oscillaion Mode 

 

In this mode, shareholders perform intelligent hazards 

among other employees according to their own rank in 

order to obtain the highest possible profit. Shareholders 

can be split into three distinct organizations depending on 

their performance. 

 

3.2.1 Shareholders with High Ranks 

 

This group includes 10-30 percent of the market 

population known as elite participants who do not engage 

in the stock exchange. 

 

3.2.2 Shareholders with Medium Ranks 

 

The second group's market share is altered in such a 

manner that the group's entire share values are 

continuous. Individual share values are updated as 

 11t1t r2nn                          (5) 
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To preserve the stocks, stay continuous, each shareholder 

randomly sells some of the shares equivalent to the shares 

bought. Each shareholder therefore decreases the share 

values provided as follows. 
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where 2tn is the total share value of t
th

 member after 

employing share variations 

3.2.3 Shareholders with Weak Ranks 

 

The shareholders can either buy or sell the stocks. The 

complete valuation of the share is therefore variable. 

Individual share values can be updated as 
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4. COMPUTATIONAL FLOWCHART OF THE 

PROPOSED PARAMETER DETERMINATION 

METHOD     

 

The computational flow of the suggested BFO algorithm 

to the problem of parameter determination is shown in 

Fig. 2. 

 

5. CASE STUDIES 

 

It was applied to parameter determination issues to 

evaluate the effectiveness of the suggested EMA.  The 

results obtained from the EMA are compared with those 

of other methods: conventional method of determining 

parameters (CPD), genetic algorithm (GA) [16] and 

particle swarm optimization (PSO) [16]. 

 

5.1 Test Machines 

 

The suggested technique of determining parameters is 

applied to two sample engines, one with 5 HP engine and 

the other with 40 HP engine. 

 

5.2 Numerical Results 

 

The obtained equivalent circuit parameters for single-

cage and double-cage models of sample motors using 

EMA method are given in Tables 1 and 2, and the results 

are compared with those of CPD, GA[16 ] and PSO[16]. 

The effectiveness of the EMA strategy for defining the 

engine parameters can be assessed by determining the 

engine's starting torque, breakdown torque and complete 

load torque and comparing them with the respective  
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Figure 2. Flowchart of EMA  

 

Start 

Read specifications, limits 

of equivalent circuit 

parameters 

Initialize EMA parameters and iteration count 

Generate initial random values (equivalent circuit 

parameters) of shares for all share holders 

Update iteration Count 

Evaluate the shareholders cost 

(objective value) using Eq. (2)  

Sort the shareholders (solutions) in ascending 

order of their objective value and divide them 

into elite, medium and weak share holders 

Update the shares (equivalent circuit parameters) 

of medium and weak shareholders in normal 

market using Eqs. (3) and (4) 

Update the shares (equivalent circuit parameters) 

of medium and weak shareholders in oscillated 

market condition using Eqs. (5) and (21) 

Re-evaluate the shareholders cost 

using Eq. (11), sort the shareholders 

and divide them into three groups 

Is Itermaxreached? 

Output the optimum solution of shareholders 

(optimal equivalent circuit parameters) and 

compute the errors at various torque values 

End 

Yes 

No 
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 Table 1. Summary of single cage model parameters for motors 1 and 2 

 

 

 

 

 

 

 

 

Table 2. Summary of double cage model parameters for motors 1 and 2 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison of torque values determined by CPD, GA, PSO and EMA methods with manufacturer data for 

motor 1 

 

Torque 
Manufacturer 

data 
CPD 

GA PSO EMA 

Single 

cage 

Double 

cage 

Single 

cage 

Double 

cage 

Single   

cage 

Double    

cage 

Tst (Nm) 15 14.25 16.73 16.52 17.6 15.54 15.98 15.45 

Tmax(Nm) 42 36.46 35.98 38.9 40.97 44.1 39.52 42.64 

Tfull (Nm) 25 27.42 20.09 28 22.11 26 26.76 25.8 

 

Table 4.  Comparison of errors obtained by CPD, GA, PSO and EMA methods for motor 1 

 

Torque 

error (%) 
CPD 

GA PSO EMA 

Single   

cage 

Double 

cage 

Single   

cage 

Double 

cage 

Single 

cage 

Double 

cage 

Tst 5 11.53 10.15 17.36 3.6 -6.53 -0.03 

Tmax 13.18 -14.33 -7.38 -2.45 5 5.9 -1.52 

Tfull -9.66 -19.64 12 -11.56 4 -7.04 -3.2 

 

Table 5. Comparison of torque values determined by CPD, GA, PSO and EMA methods with manufacturer data for 

motor 2 

 

Torque 
Manufacturer 

data 
CPD 

GA PSO EMA 

Single 

cage 

Double 

cage 

Single 

cage 

Double 

cage 

Single   

cage 

Double    

cage 

Tst (Nm) 260 265.24 258.7 218.85 255.55 222.63 266.55 255.89 

Tmax(Nm) 370 394.71 355.48 410 381.63 364 386.76 382 

Tfull (Nm) 190 178.17 200.99 220 222.78 194.28 182.22 189.49 

 

Parameters 
Motor 1 Motor 2 

CPD GA PSO EMA CPD GA PSO EMA 

R1(Ohm) 2.67 2.79 1.87 1.88 0.015 0.013 0.023 0.025 

R2(Ohm) 5.274 7.43 5.93 5.96 0.44 0.458 0.45 0.462 

X1, X2 (Ohm) 14.81 15.8 15.45 15.45 0.576 0.533 0.592 0.585 

Xm (Ohm) 409.61 97 284.32 253 11.57 12 12.13 10.70 

Parameters 
Motor 1 Motor 2 

GA PSO EMA GA PSO EMA 

R1(Ohm) 2.39 1.98 2.22 0.0104 0.0235 0.0245 

X1(Ohm) 15.3 11.05 14.01 0.586 0.594 0.666 

Xm(Ohm) 103 149.54 226.55 12.7 12.49 14.34 

R21(Ohm) 3.32 0.131 0.84 0.597 0.927 0.524 

R22(Ohm) 8.52 4.02 4.112 0.444 0.478 0.78 

X21(Ohm) 44.6 85.52 90.65 0.704 1.075 0.9 

X22(Ohm) 19.5 13.367 10.4 0.635 0.558 0.566 
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Table 6.  Comparison of errors obtained by CPD, GA, PSO and EMA methods for motor 2 

 

Torque 

error (%) 
CPD 

GA PSO EMA 

Single   

cage 

Double 

cage 

Single   

cage 

Double 

cage 

Single 

cage 

Double 

cage 

Tst -2.01 -0.5 -15.8 -1.7 -14.37 -2.52 1.58 

Tmax -6.7 -3.92 10.81 3.14 -1.62 -4.53 -3.24 

Tfull 6.22 5.78 15.7 17.25 0.7 4.09 0.268 

 

 

manufacturer information. Tables 3 and 5 demonstrate the 

torques calculated from the equivalent circuit parameters 

of different techniques. 

The error in the torque value can be calculated as 

                 100
mX

dXmX
) % ( e 


                         (3) 

 

For sample engines 1 and 2 respectively, the mistakes 

found in starting torque, breakdown torque and complete 

load torque are summarized in Tables 4 and 6. The results 

of Tables 4 and 6 show that the mistakes in the double-

cage model are small. In the single-cage model, the above 

techniques produce incorrect parameter determination. As 

seen in Tables, the EMA based double-cage model has 

provided the better results thus conforming the need to 

use a more accurate As seen in Tables, the EMA-based 

double-cage model has delivered better outcomes, thus 

meeting the need to use a more accurate model in the 

issue of determining the engine parameter, especially 

covering a broad variety of speeds. 

In this paper, the torque-slip trait is regarded in the 

objective tasks because it is used to examine a loaded 

motor's stalling and reacceleration process after a 

disruption or during the voltage sag situation. 

 

 
 

Figure 3. Convergence characteristics of the EMA for 

different initial group 

 

 

5.3 Comparative Studies  

 

Figure 3 illustrates the convergence features and 

demonstrates the effect of random initialization generated 

by the suggested EMA technique. These provide quick 

convergence and robustness with regard to the original 

group of the EMA algorithm. 

 

Table 7. Comparison of standard deviation results 

between EMA and other methods 

 

 
 

Figure 3. Convergence characteristics of the BFO for 

different initial group 

 

To statistically compare the outcomes between EMA and 

various techniques, the standard deviation is given for 

each model and engine among 20 tests in Table 7. From 

Table, the robustness and superiority of the suggested 

EMA technique over the GA and PSO techniques can be 

observed. 

Methods 

Motor 1 Motor 2 

Single 

cage 

Double 

cage 

Single 

cage 

Double 

cage 

GA 0.0195 0.0133 0.0013 0.0075 

PSO 0.0015 0.0012 0.0021 0.001 

EMA 0.002 0.0015 0.00055 0.00045 
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6.  CONCLUSION 

 

This article introduces a fresh approach to induction 

engine double-cage model parameter detection based on 

the EMA algorithm. The efficiency of the suggested 

EMA algorithm is proved for 5 and 40 HP engines and is 

contrasted with the techniques of GA, PSO and 

conventional parameter determination (CPD). 

The following points may be concluded from the results 

obtained. 

 The magnitude of the torque mistakes acquired by 

the suggested EMA technique was lower than those using 

the GA, PSO and CPD techniques. 

 Double-cage model yielded better outcomes than 

single-cage model and consequently the induction motor 

double-cage model is a more accurate model for 

parameter determination issues. 

 The suggested technique is a precious instrument for 

determining the parameters of the double cage model to 

be used in the steady state evaluation of the induction 

motor. 

 Overall, the EMA algorithm ensures that it is 

relatively skilled to solve extremely nonlinear parameter 

identification problems so that its implementation may 

also be tried in some other induction motor issues. 
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