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Abstract: Economic load dispatch (ELD) is an important issue in the energy scheme that is tried by allocating the 

generation through a set of units to minimize fuel costs and is subject to equality and inequality limitations linked to 

power balance and power production, respectively. ELD is formulated as a non-convex, nonlinear, constrained problem 

of optimization that can not be easily solved using conventional techniques. This paper introduces a fresh stochastic 

optimization strategy to fix ELD problems using Glowworm Swarm Optimization (GSO). GSO is a recently established 

derivative-free, meta-heuristic optimization algorithm that inspires as its agents the swarm of glowworms. The agents are 

considered the prospective solutions to an issue. It is memoryless and does not involve the understanding of any 

worldwide data. The solution methodology is easy to solve ELD issues with distinct limitations, such as power balance, 

generator ramp rate restrictions, and forbidden working areas. Simulations are carried out on two test schemes with 

distinct generating unit numbers. In addition, a comparative research is conducted with approaches to GA and PSO. The 

results support the robustness and skill of the suggested GSO-based ELD methodology over the other current methods. 

 

Keywords: Economic load dispatch, Glowworm Swarm Optimization, Particle Swarm Optimization, Smooth cost 

function. 

 

 

1.   NOMENCLATURE 

iF   total fuel cost of the generators 

iii c,b,a   cost coefficients of generator i. 

PD  power demand 

PL  transmission losses 

Bij  line loss coefficients 

max,imin,i P,P        minimum and maximum generation 

  of unit i. 

0
ii P,P   current and previous power output of 

  i
th

 unit respectively 

URi , DRi  up and down ramp limits of i
th

 unit  

  respectively  

k   index of prohibited zone 

nz  number of prohibited zones of unit i 

U
k,i

L
k,i P,P   lower and upper limits of kth  

  prohibited zone of generator i 


  luciferin decay constant 


  luciferin enhancement constant 

di,j (t)  Euclidian distance between  

  glowworms i and j at time t 

s   moving step size 

)t(r i
d  variable local decision range associated with 

 the glowworm i at time t 

 

)t(l j  luciferin level associated with the glowworm j 

 at time t 

rs radial range of luciferin sensor 


 constant parameter 

 

2. INTRODUCTION 

 

ELD is one of the most important issues to solve for a 

power system to operate smoothly and economically. It is 

a process of sharing the total load on a power system 

between different generating plants in order to achieve 

the greatest operating economy. Conventional techniques 

such as linear programming algorithms[1 ], quadratic 

programming algorithms[2 ], non-linear programming 

algorithms[3 ], dynamic programming algorithms[4,5 ], 

Lagrangian relaxation algorithms[6,7 ] etc. have been 

implemented to ELD issues. The classical calculus-based 

methods can not perform satisfactorily to solve ELD 

problems due to highly non-linear features of the problem 

and a large number of constraints. For instance, recent 

meta-heuristic algorithms, particle swarm optimization 

(PSO)[8-12], Adaptive PSO[13 ], chaotic PSO[14 ], 

differential evolution (DE)[15 ], evolutionary 

programming (EP)[16 ], genetic algorithm (GA)[17,18 ], 

real coded GA[19 ], bacterial foraging optimization 

(BFO)[20 ], biogeography-based optimization (BBO) 

[21], gravity search algorithm (GSA)[22 ], pattern search 

technique (PSM)[23 ], Clonal search algorithm [ 24] and 
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artificial bee colony (ABC) [25, 26] are promising 

alternatives to solving complicated ELD issues. An 

opposition-based learning idea is implemented to enhance 

GSA's performance [27]. Liao provided GA algorithm 

based on nicheimmune isolation to solve dynamic ELD 

(DELD) problem [28]. Modified chaotic DE (MCDE) is 

suggested to solve the DELD issue of a large-scale 

integrated power system [29]. Chaotic map update 

mechanism and metropolis rule are used in the MCDE to 

improve normal DE features. Modified shuffled frog 

jumping algorithm is implemented to solve the ELD 

problem [30]. Iteration-based PSO alogorithm is 

introduced to solve the ELD issue. [31]. Modified PSO 

that combines the merits of PSO and BF is provided to 

solve the restricted dynamic ELD problem [32]. In the 

BF-PSO-DE algorithm, BFO, PSO and DE algorithms are 

hybridized to solve static and dynamic ELD issues of 

multiple test systems [33]. 

Glowworm swarm optimization (GSO) suggested by 

Krishnanand and Ghose is a fresh algorithm for 

optimizing multimodal functions[34].  It is mimicked 

from the conduct that glowworms exchange data with 

their colleagues to search for food.  GSO algorithm 

displays superior function to achieve the ideal solution for 

multimodal tasks.  

Therefore, this paper introduces the GSO algorithm to fix 

the ELD issues with different limitations and test 

schemes. In addition, to compare the efficiency of the 

GSO strategy, GA and PSO methods are compared. 

 

3.   PROBLEM DESCRIPTION OF ELD  

 

The goal of the ELD problem is to find an optimal power 

generation schedule while minimizing fuel costs and also 

satisfying the operating constraints of different power 

systems. 

 

3.1 Objective Function 

 

The problem with ELD is formulated as follows: 

 




ng

i

ii )P(FFMinimize

1

                             (1)                                                                                                  

The generator's total fuel cost is defined by: 

 iiiiiii CPbPa)P(F  2  

 

3.2 System Constraints 

 

3.2.1 Power balance constraints 

The generators' complete power output must be equal to 

the sum of power requirements and complete 

transmission losses and is provided by: 

 
LD

ng

1i

i PPP 
  

The transmission losses are expressed as 

 

00i

ng

1j

ng

1i

i0jjii

ng
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3.2.2 Generator capacity constraints 

  

Each unit's output power needs to be restricted by 

limiting inequality between its limits.  This 

constraint is represented by   

 max,iimin,i PPP 
 

 

3.2.3 Ramp rate constraints 

 

The actual working range of all generating units is 

restricted by the ramp rate constraint and is provided as 

follows: 

 iii URPP  0  

 ii
0
i DRPP 

 
 

3.2.4 Prohibited operating zone 

 

Prohibited operating zones constraint is defined by 

1imin,i PPP 
 

L
k,ii

U
1k,i PPP       k = 2, . . .. nz 

max,ii
U
nz,i PPP 

 
 

4.  GLOWWORM SWARM OPTIMIZATION  

 

GSO algorithm, a fresh algorithm for swarm optimization 

is launched by K.N. Krishnanad and D. Ghose [34]. It 

mimics the motions of natural glowworms at night. The 

Glowworms practice in nature in a cluster, interacting and 

inter-attracting with each other by luciferin. If the 

glowworm releases lighter luciferin, more glowworms 

can be magnetized to move towards it. By simulating this 

natural phenomenon, combined with the features of 

natural glowworm populations, each glowworm moves to 

the strongest glowworm in its own field of perspective in 

search of the glowworm, which releases the strongest 

luciferin.  

The GSO algorithm begins by randomly placing the 

glowworms in the search space so that they are well 

dispersed. Initially, all glowworms contain an equal 

amount of luciferin. Each generation consists of a 

luciferin-update phase, followed by a transition-based 

movement phase 
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. 

4.1  Luciferin update phase 

 

The luciferin update stage relies on the function value at 

the glowworm position and so, although all glowworms 

begin with the same luciferin value during the original 

generation, these values shift at their present roles 

according to the function values. During this phase, each 

glowworm adds a luciferin quantity proportional to the 

measured value of the sensed profile (fitness) at that point 

to its previous luciferin level. This would be the objective 

function value at that stage in the event of a function 

optimization problem. A part of the luciferin value is also 

subtracted to simulate the decline in luciferin over time. 

The luciferin update rule is defined as, 

 )1t(F)t(l)1(,0max)1t(l jjj       (2) 

 

4.2  Movement phase 

 

During this stage, each glowworm chooses to move 

towards a neighbor with a luciferin value more than its 

own using a probabilistic mechanism. This implies they 

are drawn to neighbors that are growing brighter. For 

each glowworm i the probability of shifting towards a 

neighbor j is represented by, 

 



)t(iNk k

j

j
)t(l

)t(l
)t(P                                             (3) 

Where , )t(Nk i  

 )t(l)t(l);t(r)t(j,di:j)t(Ni ji
i
d   

Let, the glowworm i select a glowworm )t(Nj i with 

)t(p j  is expressed in the above Eq. Then, the discrete-

time model of glowworm movements can be described as 




















)t(x)t(x

)t(x)t(x
s)t(x)1t(x

ij

ij

ii                 (4) 

Where,       S =   δ         if dij(t)  ≥  δ 

 dij(t) otherwise 

 

 

4.3  Local-decision range update rule 

 

When the glowworms rely on only local data to 

determine their motions, the number of peaks recorded is 

anticipated to be a powerful function of the radial sensor 

range. For example, if each agent's sensor ranges cover 

the entire workspace, all agents move to the optimum 

global point, and the local optima is ignored. Since we 

regarded that prior data about the objective function is not 

accessible, in order to detect different peaks, a varying 

parameter must be made of the sensor range. To this end, 

we combine each agent i with a local decision domain 

whose radial range 
i
dr is is dynamic in nature

i
s

i
d rr0  . 

The appropriate function is chosen to adapt the local-

decision domain variety of each glowworm and is 

expressed by, 

       

  )t(Nn()t(r,0max,rsmin)1t(r it
i
d

i
d    

(5) 

 

5. SOLUTION METHODOLOGY 

 

To demonstrate the adequacy of the GSO, it is applied to 

solve the ELD problem as one of the most important and 

complex problems in the operation and utilization of the 

power system. The issue solving algorithm based on the 

suggested technique is as follows: 

Step 1: Read the input data including the generator real 

powers, generator fuel cost coefficients, ramp rate limits 

and prohibited zone values. 

Step 2: Read GSO algorithm parameters. 

Step 3: Initialize initial luciferin value lo and local 

decision range ro. 

Step 4: Initialize the glowworm within the limits of each 

variable. 

Step 5: Find the fuel cost values using Eq. (1) and the 

luciferrin value of all glowworms using Eq. (2). 

Step 6: Find the neighborhood glowworms having 

brighter glow and are in the local decision range. 

Step 7: Find the probability of glowworm moving 

towards a neighbor using Eq. (3). 

Step 8: Update the glowworm movement using Eq. (4) 

and check the limits. 

Step 9: Update the local decision range of all 

glowworms using Eq. (5). 

Step 10: Repeat the above steps 5 to 9, until maximum 

iterations are attained. 

Step 11: Display the optimal scheduled generation values 

and their corresponding fuel cost values. 

 

6. PERFORMANCE EVALUATION 

 

To explore the efficiency of GSO-based ELD issues, 

numerical simulations are performed on 6 1nd 15-unit 

schemes and the outcomes acquired are compared with 

those of GA and PSO methods.  The numerical 

assessments are conducted by EMA approach based on 

Matlab simulation. 

The parameters used in GSO parameters are as follows:  

 Luciferin decay constant  = 0.97, 

 Luciferin enhancement constant = 0.97, 
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 Constant parameter  = 0.0005;  

 Neighborhood threshold (nt) = 4;  

 Radial range of Luciferin sensor (rs) = 0.005; 

and  

 Local decision domain range (rd) = 0.0005. 

 

 

Table 1. System data for 6-units 

 

Unit(i)   ai bi ci    POZs 

1 100 500 240 7.0 0.0070 80 120 440 [210,240],[350,380] 

2 50 200 200 10.0 0.0095 50 90 170 [90,110],[140,160] 

3 80 300 220 8.5 0.0090 65 100 200 [150,170],[210,240] 

4 50 150 200 11.0 0.0090 50 90 150 [80,90],[110,120] 

5 50 200 220 10.5 0.0080 50 90 190 [90,110],[140,150] 

6 50 120 190 12.0 0.0075 50 90 110 [75,85],[100,105] 

 

Table 2. Comprision of best solution for 6-unit system 

 

Unit (MW) GA PSO GSO 

P1 474.8066 447.4970 446.892 

P2 178.6363 173.3221 175.4966 

P3 262.2089 263.4745 262.4621 

P4 134.2826 139.0594 137.0965 

P5 151.9039 165.4761 164.5297 

P6 74.1812 87.1280 89.3483 

PL 13.0217 12.9584 12.5273 

Minimum cost ($/hr) 15,459 15,450 15,448 

 

Table 3. Results obtained by various methods for 6-unit system 

 

Compared items GA PSO GSO 

Max. cost 15524 15492 15486 

Min. cost 15,459 15,450 15,448 

Mean cost 15469 15454 15450 

CPU time (sec) 41.89 14.89 9.45 

 

Table 4.   System data for 15-units 

Unit(i)   ai bi ci    POZs 

1 150 455 671 10.1 0.000299 80 120 400  

2 150 455 574 10.2 0.000183 80 120 300 [185,225],[305,335],[420,450] 

3 20 130 374 8.80 0.001126 130 130 105  

4 20 130 374 8.80 0.001126 130 130 100  

5 150 470 461 10.4 0.000205 80 120 90 [180,200],[305,335],[390,420] 

6 135 460 630 10.1 0.000301 80 120 400 [230,255],[365,395],[430,455] 

7 135 465 548 9.80 0.000364 80 120 350  

8 60 300 227 11.2 0.000338 65 100 95  

9 25 162 173 11.2 0.000807 60 100 105  

10 25 160 175 10.7 0.001203 60 100 110  

11 20 80 186 10.2 0.003586 80 80 60  
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Table 5. Comparision of best solution for 15-unit system 

 

Unit (MW) GA PSO GSO 

P1 415.31 439.12 455 

P2 359.72 407.97 380 

P3 104.42 119.63 130 

P4 74.98 129.99 130 

P5 380.28 151.07 170 

P6 426.79 459.99 460 

P7 341.32 425.56 430 

P8 124.79 98.56 72.0672 

P9 133.14 113.49 60 

P10 89.26 101.11 158.487 

P11 60.06 33.91 80 

P12 50.0 79.96 80 

P13 38.77 25.0 25 

P14 41.94 41.41 15.274 

P15 22.64 35.61 15.0592 

PL 38.2782 32.4306 30.927 

Minimum cost ($/hr) 33113 32858 32706.9 

 

Table 6. Results obtained by various methods for 15-unit system 

 

Compared items GA PSO GSO 

Max. cost 33337 33331 33217 

Min. cost 33113 32858 32708 

Mean cost 33228 33039 32953 

CPU time (sec) 49.31 26.59 14 

6.1. 6-unit system 

 

The suggested GSO method is applied to a tiny test 

scheme composed of 6 generating units with a load 

demand of 1263 MW. For this test scheme, transmission 

loss, ramp rate restrictions and forbidden working areas 

are regarded. The system information for this test case is 

provided in Table 1. Table 2 shows the optimum schedule  

of generation and the total cost of generation obtained by 

approaches to GA, PSO and GSO. It is found from the 

Table that the proposed GSO approach provides lesser 

fuel cost than the other approaches. In addition, the 

statistical results of the minimum, maximum and mean 

fuel price and the calculation time acquired by different 

methods are contrasted. It is obvious from Table 3 that  

 

the suggested GSO approach outperforms the other 

approaches. 

 

12 20 80 230 9.90 0.005513 80 80 40 [30,40],[55,65] 

13 25 85 225 13.1 0.000371 80 80 30  

14 15 55 309 12.1 0.001929 55 55 20  

15 15 55 323 12.4 0.004447 55 55 20  
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Figure 1. Convergence Characteristic of GSO for  

15-unit system 

 

6.2. 15-Unit System 

 

The GSO is introduced on a bigger test scheme that 

consists of the 15 generating units. Transmission losses 

and forbidden area of operation are included. The 

system's complete load demand is regarded to be 2630 

MW. Table 4 presents the generator coefficients, capacity 

limits, ramp rate limits and forbidden areas. In Table 5, 

the ideal generation plan, cost and power loss acquired by 

the suggested GSO method is contrasted with GA and 

PSO methods.  

In addition, the statistical results of 50 independent trials 

for the 15-unit system are presented in Table 6. The 

comparative results clearly show that the GSO technique 

is proficient of offering better solution quality than the 

other heuristic algorithms. 

The convergence behaviour of GSO is depicted in      

Figure 1. It is seen from Fig. that GSO converges more 

quickly. It is observed from Tables 3and 6 that the cost 

obtained from GSO is the lowest among the GA and PSO 

approaches. 

 

7.  CONCLUSION 

 

This paper provided the GSO algorithm for solving the 

restricted ELD issue. Since GSO is a memory-free 

strategy and does not involve worldwide data, it is 

simpler to enforce for the highly restricted ELD issue. 

The limitations include several nonlinear features, such as 

ramp-rate boundaries and forbidden operating regions. 

Two sample schemes are used to explore the 

effectiveness of the GSO algorithm and the numerical 

outcomes acquired are contrasted with GA and PSO 

approaches. The suggested strategy has produced better 

outcomes for those generated by solutions to GA and 

PSO. The solutions obtained by the GSO algorithm have 

superior quality of solution and good characteristics of 

convergence. From this comparative research, it can be 

concluded that the GSO method can be used effectively 

to solve the restricted ELD issues. 
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