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A primary challenge of computational science is solving NP-hard 

optimization problems since they are too complicated and cannot be 

effectively solved deterministically in large instances. Even though quantum 

computing can solve these problems with the help of its key properties 

quantum parallelism and tunneling, the modern hardware is yet not 

sufficiently developed. In this case, QICAs are considered as a new method 

in which the key aspects of quantum mechanics, such as superposition, 

entanglement, interference and tunneling are replicated in classical, non-

quantum computers. It aims to attain rapid optimization of NP-hard problems 

through a hybrid approach that combines cartography-based exploration, 

variable state reduction with tensor networks as well as an inclusion of a 

variant-based approach inspired by QAOA. A number of standard problems 

are used to test the model, e.g., the Traveling Salesman Problem (TSP), the 

0/1 Knapsack Problem and Max-Cut Problem. Genetic Algorithms, 

Simulated Annealing and Ant Colony Optimization trials all concur that 

QICA converges to superior solutions much faster and it can nonetheless 

handle bigger-sized problems. More precisely, the algorithm provides better 

approximation results as well as lesser computing power requirements, thus 

demonstrating the effectiveness of quantum-inspired methods in the case of 

classical systems. They establish the fact that QICAs have the potential to 

solve challenging optimization problems, particularly in the cases where 

quantum machines are absent or inaccessible. The way of solving the 

problem represented in the study is quite innovative and serves as a bridge 

between the theory of quantum and practical implementation in the 

optimization field. 
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1. INTRODUCTION 

Optimization problems that are NP-hard form the basis of a wide variety of significant problems in 

the fields of logistics, finance, supply chain management, bioinformatics, telecommunications and artificial 

intelligence. These problems that comprise Traveling Salesman Problem (TSP), 0/1 Knapsack Problem and 

Max-Cut, become significantly more complicated with the increase in the problem size and the exact 

solutions cannot be done in poly-time [4]. The majority of the past solutions of dealing with the NP-hard 

problems incorporate the use of classical and metaheuristic algorithms such as GA, SA, Tabu Search and 

Particle Swarm Optimization to trade-off between the running time of an algorithm and its preciseness. Such 

techniques scale up to reasonable solutions but in many cases cannot scale further, encounter premature 

convergence and do not exhaust the set of possible solution options in large or difficult cases [5,6]. 

Quantum computing with its principal ideas of superposition, entanglement and tunneling can 

resolve some of these problems. Several algorithmic efforts, including Grover search and the Quantum 

Approximate Optimization Algorithm (QAOA) can seemingly operate significantly quicker than their 
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classical counterparts. The current state of practical quantum computing is currently inhibited by an 

immature state of quantum hardware, its vulnerability to noise, decoherence and the relatively small number 

of accessible qubits. That is why quantum optimization is not yet ready to be applied by the majority of 

people or to most of the uses [7,8]. 

In light of these hindrances, this effort introduces Quantum-Inspired Classical Algorithms (QICAs) 

that classically emulate crucial features of quantum computation, allowing the advantages of the quantum 

theory to be exploited without appeal to quantum computers per se. In more detail, our framework is made up 

of simulated quantum walks, a compressive representation with tensor networks and a variation layer akin to 

the QAOA algorithm, to allow us to iterate and improve candidate solutions [9]. 

The proposed QICAs are tested on a collection of standard NP-hard problems and the experimental 

results indicate that the QICAs can speed up, are more accurate and more efficient in dealing with problems 

compared with popular heuristics. As this method reproduces quantum actions, it creates a solid connection 

between the theoretical excellence of quantum computation and the problems encountered by classical 

optimization in the present day. Lastly, this work is aimed at extending quantum-inspired computing and 

providing a practical efficient solution to addressing hard optimization problems before the era of quantum 

computers kicks off. 

 

 

2. BACKGROUND AND RELATED WORK 

 

2.1. NP-Hard Optimization Problems 

NP-hard optimization Decision and search problems, known as NP-hard, have no known algorithm 

that can solve instances quickly unless P=NP. A considerable number of operations research, logistics, 

machine learning and network design applications require solutions to these problems, and the optimal 

solutions are not trivial to find, as they involve a large number of items that are to be combined. One is the 

Traveling Salesman Problem (TSP) that seeks an optimum path that a salesperson can visit every city, come 

back and ensure that every city is visited only once—the problem becomes factorially harder as the number 

of cities grows.  

The 0/1 Knapsack Problem is about you selecting the items that can fit in your knapsack and, thus, 

you decide between value and restriction. A SAT problem is to determine whether there exists any truth 

setting that can solve each term of a given Boolean expression. This issue that arises in both graph theory and 

circuit design, involves determining a partition of the vertices of a graph into two sets in order to maximize 

the total weight of the cut. These benchmark problems are the primary problems that are connected with NP-

hardness and allow testing the results of new algorithmic strategies, which then allows developing even more 

improved solution strategies [11]. 

 

2.2. Quantum-Inspired Techniques 

As quantum computing is of interest to more people, various quantum principles have motivated the 

invention of quantum-like algorithms. The idea is to employ quantum capabilities like parallelism, tunneling 

and entanglement, to speed up optimization process in ordinary computers. In Quantum Annealing (QA), the 

system energy global minimum is achieved by adiabatically changing the system state from a simple initial 

state to a complicated final state, like in the adiabatic evolution of quantum systems.  

Quantum annealing machines like those produced by D-Wave Systems, are special purpose 

machines, although a few gauges that exhibit similar behaviour have been designed using everyday thermal 

and stochastic (random) tools. Classical random walks just utilise ordinary probabilities, whereas Quantum 

Walks, which extend them, utilise probability amplitudes such that constructive and destructive interference 

can enhance the search and ensure the walker does not enter regions which might trap it.  

Originally Tensor Networks were introduced to study quantum many-body systems, but they 

provide a straightforward means to describe many-dimensional states by incorporating knowledge of their 

entanglement structure. MPS and TTN enable us to manage complicated dependencies in optimization issues 

with a smaller amount of resources necessitated, principally when entanglement is minimal. Ultimately, the 

Quantum Approximate Optimization Algorithm (QAOA) is a prominent hybrid algorithm that requires 

discrete optimization to be performed by tuning parameterized quantum circuits.  

Although QAOA was designed on quantum machines, the framework has inspired classical 

algorithms with parameterized cost and variation, bridge quantum concepts with what can be achieved in 

classical computation. Together, the quantum-like algorithms can constitute a promising step to more 

adequate solutions to classical optimization problems deemed hard [12]. 
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2.3. Classical and Metaheuristic Approaches 
Classical and metaheuristics have been used during years to determine fast designs of NP-hard 

optimization problems because their solution by use of fine-tuned techniques might be too complex for most 

computers. Genetic Algorithms have been known to be powerful on most problems, however they routinely 

get stuck in local optima, and require extensive time to converge. SA takes a probabilistic method of the 

physical annealing process to escape local solutions; however, its impact is highly influenced by the fast or 

slow cooling schedule. Tabu Search avoids this happening of a local search becoming stuck in unproductive 

locations where it repeats itself through its use of memory and cycles [10]. Ant Colony Optimization draws 

on the pheromone behavior of ants to encourage improved decisions by strengthening solutions that work and 

can be applied to solve routing problems.  

Despite their utility, cannot be applied at scale when issues have a high number of features or when 

there are hard constraints. Conversely, quantum-inspired algorithms allow machines to verify more 

alternatives than those of the classical algorithms since probabilistic trainers, interference and tensor forms 

are deployed. The information sources used to construct classical algorithms are the research articles by [2] 

on the simulated quantum annealing and [1] on QAOA. Moreover, according to [3], tensor networks bring a 

significant decrease in memory requirements and computational speed when dealing with large quantum 

systems. They indicate the emergence of a novel strategy based on combined heuristics and quantum 

techniques that makes it far more feasible and effective to handle difficult optimization problems. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1. Quantum-Inspired Classical Algorithm Framework 

QICA is designed such that useful components of quantum computation are acted upon a classical 

setting, finding solutions to NP-hard optimization problems faster with standard computers. The architecture 

is created by three strong areas. Firstly the Simulated Quantum Walk Search (QW-S) module is motivated by 

quantum walks that generalize the classical random walks to incorporate the interference due to phases. This 

simplifies the task of analyzing the solution space, as good directions are strengthened and bad directions are 

hushed. Second, the Tensor State Compression (TSC) layer stores high-dimensional solutions using matrix 

product states (MPS) originally introduced in quantum physics, in a compact form. Consequently, the apps 

with this algorithm can handle states that are significantly larger than those of classical systems without 

issues of memory consumption and high-complexity problems. In conclusion, the VCFO module similarly to 

the QAOA design applies parameterized classical functions and re-computed gradients to iteratively improve 

solution quality. Being a local optimizer, this module also repeatedly updates the solution parameters to 

minimize an objective function, just as the parameters of variational quantum circuits are also continuously 

optimized. Being a hybrid, it offers functionality of classical computers in approximating quantum 

applications. QICA architecture is represented in Figure 1. 

Algorithm 1: QICA Modular Framework 

Input:  

    - Objective function f(x) 

    - Constraints and parameters 

    - Population size N, Iteration limit T 

Output:  

    - Optimized solution x* 

1. Initialize population P = {x₁, ..., x_N} with randomized values 

2. Apply QW-S module: 

    - Perform quantum-walk-based exploration on P 

    - Update each x_i based on constructive interference 

3. Apply TSC module: 

    - Represent P using tensor network (MPS) 

    - Compress by eliminating weak entanglements 

    - Decode to get reduced set P’ 

4. Apply VCFO module: 

    - Define parameterized cost function C(θ) 

    - Initialize θ and optimize using gradient descent: 

        For t = 1 to T: 

            θ ← θ - η ∇θC(θ) 

            Update population P’ 

5. Return best x* ∈ P’ with highest f(x) 
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Figure 1.  Architecture of the Quantum-Inspired Classical Algorithm (QICA) 

 

3.2. Algorithm Workflow 

The QICA execution follows a pre-arranged workflow composite of four interconnected phases that 

model a quantum-classical hybrid optimizer. The process is illustrated in Figure 2, starts with a random 

collection of candidate solutions, each corresponding to one of the photonic chips, encoded, e.g., as in 

superposition quantum mechanics. We employ quantum superposition whereby every moment in the data is 

viewed to work with a great number of solutions simultaneously at the onset. In the following phase, which is 

Exploration, biased probabilistic walks in the space of neighboring states are conducted on each candidate 

solution. In this method, the wave is modulated and interfering waves are employed so that the search 

process exploits the areas with better fitness values and hopefully escapes trapped points and finds good 

solutions.  

The instant a varied set of promising models has been amassed, the TSC Layer operates to reshape 

these huge representations into smaller tensors. In so doing, the simulation is able to handle big data without 

losing the interrelationships between its variables that embodies the concept of quantum entanglement in a 

classical manner. The final phase is VCFO Module Execution, which is to specify a cost function that suits 

the problem, parameterize it and optimize repeatedly, using well-known optimization methods. The algorithm 

automatically changes the settings, and steers the solution to areas of the landscape where the energy (cost) is 

lower than average. Probabilistic exploration, combined with the dimension reduction and variational 

refinement leads to an efficient process, which is very good at dealing with NP-hard problems. 
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Figure 2. Workflow of the Quantum-Inspired Classical Algorithm (QICA) 

 

Algorithm 2: Quantum-Inspired Classical Optimization (QICA) 

 

Input: 

    - Objective function f(x) to optimize 

    - Problem-specific constraints and parameters 

    - Population size N 

    - Maximum iterations T 

    - Learning rate η 

    - Tensor compression threshold τ 

 

Output: 

    - Optimized solution x* 

 

Step 1: Initialization 

    Generate initial population P = {x₁, x₂, ..., x_N} with random values 

    Initialize weights w_i ∈ [0, 1] to simulate superposition 

    Normalize weights: ∑w_i = 1 

 

Step 2: Quantum Walk Simulation (QW-S) 

    For each x_i in P: 

        Perform probabilistic walk based on fitness-directed amplitude shifts 

        Apply constructive/destructive interference to update x_i 

 

Step 3: Tensor State Compression (TSC) 

    Represent P using tensor network (MPS) 

    Compress tensors by threshold τ to retain only significant entanglements 

    Decode compressed tensor into updated population P’ 

 

Step 4: Variational Cost Function Optimization (VCFO) 

    Define parameterized cost function C(θ) 



                                                                                       ISSN: 2456-1983 

IIRJET, Vol. 10, Issue. 3, Mar 2025:  1 - 11 

6 

    Initialize θ randomly 

    For t = 1 to T: 

        Compute gradient ∇θC(θ) 

        Update θ ← θ - η ∇θC(θ) 

        Evaluate updated candidate x_t 

 

Step 5: Return best x* from P’ with optimal f(x) 

 

 

4. EXPERIMENTAL SETUP 

 

4.1. Problem Instances 

 

 
Figure 3. Generation and Characteristics of Benchmark Problem Instances 

 

Presentation of the benchmark challenges that were used during the experimental testing is depicted 

in Figure 3. Examples of the problems include the TSP, the 0/1 Knapsack and Max-Cut which belong to three 

unique categories within combinatorial optimization: permutation, picking subsets and splitting up graphs. 

Illustrations of data sources and problem configurations are presented. 

In order to make sure that the suggested QICA is really efficient, we selected three valuable NP-hard 

tasks, i.e. the Traveling Salesman Problem, the 0/1 Knapsack Problem and the Max-Cut Problem. We chose 

standardized TSPLIB benchmark cases which contained problems having 50, 100, 200, 300 and 500 cities. 

These data of shorter tours assist in evaluating what issue requires further research. In order to investigate the 

0/1 Knapsack Problem we created sets of items whose weights and value behaved either uncorrelated, weakly 

correlated or highly correlated. The cases covered scenarios with 100 up to 1,000 items, to determine how the 

resources are managed and constraints are met. We created two pairs of synthetic undirected graphs with Erd 

Kos model and Barabasi Albert networks. We assigned different values to the number of nodes, which 

became 100 or 1,000 and we assigned weights to the nodes randomly within a specified range. These three 

issues all regard permutation-based, subset selection and graph partitioning problems, and they assist in 

demonstrating the overall generalization and flexibility of QICA. 
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Figure 4. Overview of Experimental Setup for QICA Evaluation 

 

A look at how the experimental setup was set up to assess the QICA framework is given in Figure 4. 

The input NP-hard problems (TSP, Knapsack and Max-Cut) are solved by QICA and compared to standard 

algorithms (GA, SA, ACO, QAOA). Researchers analyze their results using three important measures: 

approximation ratio, the time it takes to converge and how easily the algorithm adapts to larger cases. 

 

4.2. Baseline Comparisons 

The performance of the proposed QICA framework was measured against classic metaheuristics and 

a quantum algorithm run on a computer is represented in Table 1. Current literature started with the Genetic 

Algorithm (GA) that employs population evolution strategy to find a solution. Because probabilistic single-

solution search is of importance, the SA method was also considered to model metallurgical annealing. ACO 

technique was selected because of its success on routing and other related issues that are based on the 

simultaneous decision making of all the agents based on the pheromone updates. Such baseline methods are 

established in the literature and all experimentations are carried out in a standardized manner so as to give 

comparable conditions during comparison. Besides, we have included an example of the Quantum 

Approximate Optimization Algorithm (QAOA) and performed simulations with IBM Qiskit on some small 

problem sizes. Even though QAOA was designed to work with quantum systems, running it on a simulator 

allows us to observe how well QICA scales to realistic quantum systems. The grid search was used to tune all 

the algorithms to the optimum configuration and each test was repeated ten times independently to ensure 

statistical robustness.  

 

Table 1. Classification and Roles of Benchmark Algorithms Used in QICA Evaluation 

Algorithm Type Computational Paradigm Purpose/Use 

QICA Quantum-Inspired Classical Proposed hybrid framework 

GA Metaheuristic Evolutionary (Classical) Global search 

SA Metaheuristic Probabilistic (Classical) Local minima escape 

ACO Metaheuristic Swarm Intelligence (Classical) Routing and pathfinding 

QAOA Quantum Algorithm Simulated Quantum (via Qiskit) Benchmark quantum-like 

performance 

Input Problems Algorithms Evaluation Metrics 

TSP 

(From TSPLIB) 

0/1 Knapsack 

(Synthetic Instances) 

Max-Cut 

(Random & 

Structured) 

QICA 

GA 

SA 

ACO 

QAOA 

(Simulated in 

Qiskit) 

Approximation Ratio 

Convergence Time 

Scalability with 

Input Size 

Output 

Best Approximate 

Solution 



                                                                                       ISSN: 2456-1983 

IIRJET, Vol. 10, Issue. 3, Mar 2025:  1 - 11 

8 

 
 

Figure 5. Baseline Algorithms for QICA Performance Benchmarking 

 

How baseline algorithms were arranged for testing and comparing QICA is displayed in Figure 5. 

The algorithms in the set are classical (GA, SA, ACO) as well as a quantum method (QAOA) built using 

IBM’s Qiskit. Because these algorithms come from many different optimization techniques, we can do a fair 

and complete comparison. 

 

4.3. Evaluation Metrics 

Each of the algorithms was tested using the following three primary parameters Approximation 

Ratio, Convergence Time and Scalability. The quality of the solutions to each problem instance was 

quantified by the Approximation Ratio which is the ratio of what the algorithm produced divided by the best-

known optimal solution. In maximization problems (Knapsack, Max-Cut), I calculated this as obtained value 

/ optimal value, but in TSP I took the opposite procedure. The algorithm was timed in seconds to reach a 

stable solution on a number of repeat runs. This figure notes the economical aspect of a system and its real 

time operation. To measure Scalability with Input Size, we measured the outputs and the time that it took to 

obtain a close solution as the problem size increased. Owing to this, we could observe what each algorithm 

was capable of handling and quantify the strength of QICA as solving high-dimensional problems. Taken 

together, these signs provide a substantial basis to judge the prospective and utility value of the proposed 

quantum-inspired method. Performance evaluation metrics are represented in Table 2 and Figure 6. 

 

Table 2. Evaluation Metrics for Assessing Optimization Algorithm Performance 

Metric Definition Purpose 

Approximation 

Ratio 

Obtainedvalue/OptimalvalueObtained value / 

Optimal value (or inverse for minimization) 

Measures solution quality 

Convergence 

Time 

Total time to reach a stable solution (average 

of runs) 

Measures computational 

efficiency 

Scalability How performance changes with increasing 

input size 

Measures robustness and 

generalization 
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Figure 6. Performance Evaluation Metrics for QICA and Baseline Algorithms 

 

 

5. RESULTS 

QICA was tried on performance measure on three typical NP-hard problems: TSP, Knapsack 

Problem which has only 0/1 choice, and Max-Cut Problem. Approximation ratio, convergence time and 

scalability of the algorithm are the main aspects I considered. In all experiments, Python implementations of 

QICA, GA, SA, ACO and QAOA were executed on an Intel Core i7 computer with 32GB RAM. 

The ratio of approximation of QICA was larger than the classical heuristics in every instance. The 

TSP algorithm that was tested by QICA achieved an extremely superior average approximation ratio of 1.04 

in comparison to GA (1.12), SA (1.15) and ACO (1.08). The 0/1 Knapsack Problem results indicate that 

QICA has attained 98.7 percent of optimum value in the strongly correlated instances whereas GA, SA and 

ACO could only get 94.3 percent, 91.8 percent and 95.1 percent respectively. On Max-Cut instances, QICA 

was able to average 97.6% on cut weight better than GA (92.2%), SA (89.6%) and ACO (93.1%). 

QICA was very effective when it comes to the rate of convergence. Due to the use of quantum 

walking and compressing tensors, the algorithm was 3045 percent faster than other algorithms to stabilize an 

answer on medium-size datasets. On the 100-city instance, QICA stabilizes in 12.4s, GA in 18.9s, SA in 

21.3s and ACO in 16.2s. The time advantage was the most apparent in larger instances (500-city TSP or 

1,000-item Knapsack) since the amount of time consumed was significantly decreased due to tensor 

compression. 

The benchmark problems of increasing size were analysed regarding their performance. The QICA 

solution demonstrated only a slight decrease in quality when the size of entered data was bigger. On graph 

instances of 1,000 nodes, QICA was still at an approximation ratio of over 95%, whereas the set of standard 

algorithms dropped to an approximation ratio of below 90%. Due to modular compression, the algorithm 

could sub-linearly adapt and solve younger tests slower. 
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Figure 7. Scalability Comparison of QICA vs GA 

 

A comparison of how both QICA and Genetic Algorithm (GA) scale with respect to problem size is 

needed. Figure 7 show QICA has a higher convergence time but its accuracy is maintained more easily which 

supports its usage on a large scale. 

 

5.1. Discussion 

Experimental outcomes verify that QICA provides an encouraging alternative to common heuristics 

methods of solving NP-hard problems. QICA outperformed Ga, Sa and ACO in all the problem domains that 

were tested and had a significantly high chance of converging faster. These advances are due to the 

throughput of quantum-inspired characteristics all of which tend to make the algorithm more effective and 

stable. The simulation of quantum walk assisted QICA to find answers more efficiently as compared to 

random or greedy classical algorithms. In constructive and destructive interference patterns, QICA focused 

on feasible good solutions and avoided the situation in which the system swept through neighborhoods that 

had the potential of yielding local optima. Through this mechanism, the possibility of convergence 

prematurely was reduced significantly, a common live in many classical metaheuristics. 

Besides this, the tensor state compression (TSC) layer played a critically important role in taming 

the rapid explosion of solution space typically observed in large-scale combinatorial optimization tasks. With 

the help of the matrix product states, QICA could deal with and measure solutions of high dimensions with a 

significantly small amount of memory compared to the previous techniques. Due to this fact, the scalability 

of the algorithm as well as important relations between variables was retained that contributed to making 

better decisions by the algorithm. 

Another aspect of VCFO enhanced QICA, which utilized the ideas of the Quantum Approximate 

Optimization Algorithm (QAOA). Through repeated classical gradient descent QICA refined candidate 

solutions and constrained the usual issue of oscillating behavior seen in other algorithms. This made the 

convergence process more fluent and more dependable. It is worth mentioning that the performance benefits 

of QICA did not decrease as the problem size grew. However, when the input size increased, the classical 

methods did not work as well but due to the structure of QICA, it was simpler to deal with bigger cases with 

the technology. It shows that quantum-inspired algorithms are useful both in the present and in the 

anticipated value once quantum computing matures. 

In conclusion, the three-fold excellent performance of QICA implies that quantum-inspired 

computing can possibly lead to the optimization science revolution. The report shows that in classic systems, 

following quantum ideas is usually effective in making practical and powerful developments particularly in 

areas where calculations involved are too many to be done using regular computers. 
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6. CONCLUSION 

This work proposed a new QICA algorithm that can contribute to solving optimization problems 

belonging to the NP-hard category, using only a regular computer, and without having access to quantum 

hardware. Based on simulated quantum walks, corrections to efficient tensor state compression and a aware 

variational optimization algorithm, QICA replicates significant sections of quantum computation in order to 

accelerate the convergence of solutions. Extensive experimentation on Traveling Salesman Problem, 0/1 

Knapsack and Max-Cut indicated that QICA performs better than most other metaheuristic based algorithms 

both in accuracy and estimate time to complete computations. Due to its scalability with the size of the data 

and the fact that the algorithm works well on a broad set of problems, it can find application in a variety of 

places and is sensible. These results indicate that the field of quantum-inspired classical computing has a 

solid potential of being a valuable, accessible method of solving complicated combinatorial problems since 

the availability of working quantum computers is currently not widespread. Thus, QICA not only brings 

together quantum and classical minds but also paves the way to future research on how to apply hybrid and 

quantum algorithms to real-to-life optimization problems. 
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