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 Structural Health Monitoring (SHM) is vital for the protection of 

urban buildings as more cities become smart. This work suggested an 

AI-based SHM framework to support the enhanced resilience, safety 

and upkeep of critical infrastructure. WSNs, edge computing and a 

deep learning model mixing CNN and LSTM units are part of the 

framework. As a result, architects can track any obvious concerns in 

structure in near real-time with vibration and strain sensors placed on 

both urban bridges and high-rise buildings. The model uses data 

collected in simulations and the real world to discover errors in 

structures, ensuring an accuracy of over 96%. Moreover, when edge-

based processing is used, both latency and bandwidth needs are 

minimized, making the system capable of handling many large-scale 

deployments. A case study of a bridge in Bangalore indicates that the 

approach can monitor continuously, detect faults early and warn in 

advance. The new process is shown to have a 35% lower rate of false 

positives than theoretical threshold methods. The results emphasize 

that AI-led SHM systems play a key role in predictive maintenance 

and strengthening urban infrastructure in these rapidly changing 

smart urban environments. 
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1. INTRODUCTION 

Because cities are growing so rapidly these days, there are now many high-rise buildings, 

bridges, highways and public transit systems. Because towns grow larger and people live in dense 

cities, ensuring that important structures remain secure, consistent and last a long time is very 

important. But because many structures are old, they now carry more weight and they are exposed 

to changing environmental conditions, there is a higher chance they will fail and suffer serious 

damage. Because of its ability to quickly find cracks, corrosion, fatigue and different types of 

damage, Structural Health Monitoring (SHM) is essential for maintaining the well-being of 

infrastructure. Even though it is an important factor, traditional SHM mainly using manual checks 

and threshold sensors is unable to scale up, respond quickly and usually does not predict failures in 

advance. 

https://iirjet.org/index.php/home
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In order to overcome these limitations, this study develops a new AI-based framework for 

smart urban infrastructure monitoring. A proposed plan is to use Wireless Sensor Networks to 

gather vibration and strain data continuously, to do fast computing at the edge and a new learning 

method that blends CNNs and LSTMs. The CNN draws out key spatial features from sensor data 

and the LSTM focuses on the dynamic patterns that determine future harm. By using this method, 

researchers can quickly find unusual events and easily determine their fault types with great 

accuracy. To demonstrate the system works well and is applicable, the architecture was applied to a 

real bridge in Bangalore and tested through simulation. 

The contribution of the study is three-fold: (i) constructing a scalable and edge-based 

architecture for SHM in smart cities, (ii) constructing and training a CNN-LSTM model for 

identifying structural faults and (iii) demonstrating the reliability and 35% fewer false alarms in 

simulations and practical use when compared with typical SHM approaches. Since intelligence has 

been added to SHM, this research benefits infrastructure by changing monitoring from a reactive to 

a predictive state, following the long-term plan for autonomous, self-monitoring smart cities. 

 

2. LITERATURE REVIEW 

For quite some time, Structural Health Monitoring (SHM) has been understood as a key 

tool to keep civil infrastructure safe and durable. Most conventional SHM approaches depend on 

direct examination, visual evaluations and performing modal analysis, all designed to use experts 

and require routine checks. Although these processes are necessary for first checking the problem, 

they take a lot of effort, time and usually miss early problems that could cause bigger problems in 

the future. 

For this reason, researchers have begun to apply Artificial Intelligence (AI) to help improve 

and automate SHM systems. These days, neural networks, support vector machines (SVM), 

decision trees and fuzzy logic systems are being used to find unusual patterns in data recorded by 

sensors. According to Farrar and Worden (2012), machine learning approaches are designed to 

handle the complexity of non-linear structure responses and make diagnostics more precise. Gul 

and Catbas (2009) found that statistical pattern recognition and time-series modeling catch delicate 

changes in the structure that other methods fail to recognize. 

Today’s urban areas which are becoming sophisticated smart ecosystems, rely on IoT, 

WSNs and cloud-based applications for strong SHM systems. With the use of these technologies, 

data can be constantly collected from different parts of the infrastructure, supporting both remote 

checking and early procedures for warnings. Despite all these new findings, certain major problems 

remain in SHM research. Because integration between AI and sensor data is missing, the system 

can’t supply useful information during urgently occurring events the building may experience. 

Moreover, since edge computing is not used much in urban areas facing bandwidth and latency 

concerns, monitoring systems can’t operate efficiently and quickly everywhere. 

Although we have improved the use of AI in diagnostics and added IoT to SHM systems, 

still we lack comprehensive frameworks that bring together deep learning, real-time sensor use and 

technologies at the edge. This research is driven by identifying key shortcomings and responding to 

them by designing a flexible SHM system based on AI for the smart city ecosystem. 
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Table 1. Features of SHM 

Feature Conventional SHM AI-Based SHM 

Damage Detection 

Accuracy 

Moderate (visual/manual error-

prone) 

High (automated fault 

detection) 

Response Time Delayed (offline analysis) Fast (real-time via edge/cloud) 

Scalability Limited (manual inspections) High (sensor networks, IoT) 

Real-Time Monitoring No Yes 

Data Interpretation Expert-dependent Automated and adaptive 

Cost of Operation High (labor-intensive) Moderate (optimized 

workflows) 

Maintenance Frequency Frequent Reduced 

Automation Capability Low High 

 

3. METHODOLOGY 

This research introduces a new approach to monitoring structures that brings together 

wireless sensing, edge computing and deep learning for continuous detection of problems and the 

ability of the infrastructure to resist damage in smart cities. The main parts of the methodology are 

system architecture, data collection, model design and training and evaluation. 

3.1 System Architecture 

The system architecture being considered consists of a block called sensing, one called 

edge processing and a top block of centralized AI-based inference. WSN is created at the core, 

adding nodes to the architecture of bridges and skyscrapers to monitor changing factors like 

vibrations, strains and the structure’s temperature. Sensor data is first sent to edge computing units 

like Raspberry Pi and NVIDIA Jetson Nano, where it is filtered, noise is reduced and some features 

are prepared, to help minimize delays and cut back on the load sent to the main server. After 

processing, the data goes from the sensor to a cloud-based AI tool that does real-time analysis of 

the structure and classifies any issues found. 

 

Figure 1. System Architecture of the AI-Powered Structural Health Monitoring Framework 

Integrating WSN, Edge Computing, and CNN-LSTM Model 
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3.2 Data Collection 

At key spots along the structure, triaxial accelerometers, strain gauges and temperature 

sensors are important parts of the sensing layer. This data is collected at 100 Hz to record high and 

low frequencies of structural motion. Time is set uniformly across the nodes using a server and the 

sensor nodes transmit their data packets in real time with low-power communication, leading to 

low packet loss. Extra sensors are placed to help when data is missing and to ensure the system 

remains strong. 

3.3 AI Model Design 

The basic operation of the suggested system is driven by a hybrid model that combines 

CNN with another type of model, LSTM, to analyze data from structural vibrations. Within CNN, 

local spatial features are identified in the input signals by detecting sudden shifts in frequency, 

abrupt rises and transient anomalies that may represent stress cracking or damage of parts. At 

multiple scales, one-dimensional convolutional filters are used to highlight these properties of the 

signal. Following the feature maps, the LSTM module finds and records any changes in damage 

patterns across all time steps. By analyzing changes over time, the system separates typical 

fluctuations from serious damage and guarantees it detects all the anomalies right. 

 

 

Figure 2. Architecture of the Proposed CNN-LSTM Model for Structural Fault Detection 

3.4 Model Training and Evaluation 

The mix of experimental and theoretical data was used to train the hybrid CNN-LSTM 

model which came from finite element analysis and MATLAB structural response simulations, as 

well as from data collected during various experiments on structures and bridges. In order to make 

the model more general and strong, serval data augmentation techniques are added. The model is 

optimized using Adam to make the optimization process more efficient. Evaluation is based on 

widely used metrics, including accuracy for the rate of total correct predictions, precision for the 

proportion of correct are among positive results, recall (true positive rate) and the F1-score which is 

the harmonic mean of precision and recall. The developed model is evaluated using separate 

validation data by comparing its performance with common thresholding methods, a single CNN 

and an LSTM. Hybrid methodology works very well for real-time anomaly detection and future 

fault prediction, showing it is an effective choice for smart city projects. 
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Figure 3. Performance Comparison of SHM Models Using Accuracy, Precision, Recall, and F1 

Score 

 

4. EXPERIMENTAL SETUP 

A complete experimental setup was designed to test the proposed SHM framework which 

used both virtual and real-world information. The study explored how well the hybrid CNN-LSTM 

model performs in several situations and compared those results to what is achieved using standard 

approaches. 

4.1 Test Structures 

The researchers looked at the SHM framework using two types of structures: a simulated 

bridge and a modern multistory building testbed. The first design simulated an urban bridge using 

the MATLAB structural dynamics toolbox in a finite element method. The model replicates reality 

by simulating weight change from vehicles, changes in the structure caused by temperature and the 

spread of damage, leading to cracks and loosened joints. The second test setup was in a commercial 

building that has many stories, where several sensors were also installed at beams, joints and base 

columns. Mechanical impacts and mass shifting were applied to the building, using controlled 

methods which allowed for genuine simulations to be made for the model. These test environments, 

when used together, allowed the model’s generalizability and robustness to be tested in both 

simulations and with real systems. 

 
 

Figure 5. Overview of the Hybrid SHM Experimental Setup for Smart Infrastructure 
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4.2 Tools and Software 

Programs were put together to ensure the experiments supported the simulation, modeling 

and evaluation parts. Using MATLAB, I ran simulations to see how the structure reacts and built 

datasets that simulate sensor observations for a wide range of load and damage actions. A deep 

learning model was built and trained using Python, TensorFlow and Keras, for the CNN-LSTM 

hybrid architecture. Besides, NS3 (Network Simulator 3) was also run to model the wireless 

signaling between sensor nodes and edge devices, allowing us to modeling the usual network 

delays, loss of data and restrictions seen in practical SHM system use. With NumPy and Pandas 

available for data and signal processing, Matplotlib made both viewing and comparing 

performances possible. Using these tools, I was able to carry out experiments involving data 

generation, live inference and assessment in real time. 

 

Figure 6. Software Toolchain Workflow, illustrating the data flow across MATLAB, Python, 

TensorFlow/Keras 

4.3 Hardware Deployment 

In the physical experiment, everything was carefully connected by a network of hardware 

for sensing and processing. At strategic areas throughout the multistory building, scientists put in 

multiple accelerometers, strain gauges and ambient temperature sensors. They measured different 

changes and environmental conditions as they happened. The gathered data was sent out to edge 

computing devices made up of Raspberry Pi 4 and NVIDIA Jetson Nano units. Edge units were set 

up to process signals locally, remove interfering signals and compress the data and transmit them 

over MQTT to a central cloud server for further storage. The server where the LSTM model was 

deployed allowed CNN-LSTM to assess faults and abnormalities. Operation was maintained by 

providing power from a battery-supported IoT gateway, while remote access was set up for 

checking and saving data. The equipment permits rapid and scalable movement of data in both test 

environments and buildings. 
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Figure 7. Sensor Node Deployment on Multistory Building 

4.4 Evaluation Strategy 

An assessment approach was used that looked at both the performance of the framework 

compared to competitors and how well it runs. The performance of our hybrid CNN-LSTM model 

was compared with that of Fast Fourier Transform (FFT) analysis and threshold monitoring based 

on rules. FFT techniques were applied to sense frequency changes related to the structure, while 

models set at a threshold alerted systems if readings were considered dangerous. Because they are 

present in current SHM implementations, these traditional approaches were selected as references. 

Important metrics evaluated in the method included success in classification, detection speed, the 

rate of false positives and strength against disturbances. Offline and online experiments were 

performed and live data from the sensors in the building was used to represent real monitoring. For 

this purpose, researchers made it windy or walked through the model to check the model’s reaction 

and durability. All testing compared to old methods revealed that the proposal performed better in 

all relevant areas and remained consistent as situations changed. Because the system was 

thoroughly validated, it is ready for use on a large scale in urban environments. 

 

Figure 8. Latency and False Positive Rate Comparison of SHM Models 
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5. RESULTS AND DISCUSSION 

5.1 Results 

Both artificial and real data was used to assess the effectiveness of the proposed SHM 

framework using AI. Thanks to its accuracy of 96.4%, precision of 94.8% and recall and F1-score 

of 95.2%, the CNN-LSTM model was successful in identifying structural abnormalities in the 

datasets. Applying edge computing with Raspberry Pi and Jetson Nano made detection much faster 

and reduced the time it took to get results by up to 42%. 

When the system was used in a field study of an urban bridge in Bangalore, it spotted early 

cracking and immediately sent alerts. Manual checks afterward confirmed that the alerts were 

correct, proving that the model works in practical situations. The new method performed better 

than FFT and threshold testing by lowering false positives by 35%. 

Table 2. Performance Comparison of CNN-LSTM Model vs. Traditional SHM Techniques 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Latency 

Reduction 

(%) 

False 

Positive 

Reduction 

(%) 

FFT-Based SHM 78 75 72 73 - - 

Threshold-Based 

SHM 

81.5 79 77.5 78.2 - - 

CNN-LSTM 

(Proposed) 

96.4 94.8 95.2 95 42 35 

 

 
 

Figure 9. Accuracy, Precision, Recall, and F1-Score Comparison for SHM Models 

5.2 Discussion 

Both the accuracy and F1-score results for the CNN-LSTM model prove it is capable of 

properly detecting structural problems and limiting false alerts. This better precision is most 

important for actual SHM as misses or false alarms can result in avoidable maintenance and cost 

more to run the equipment. Meanwhile, since the system has high recall, it helps to spot all small 

signs of trouble which is important for safety-critical infrastructure. 
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Low latency detection was possible only because of edge computing in smart cities. 

Moreover, it reduced the need to communicate often, saved energy and didn’t depend as heavily on 

the cloud which made the system easier to scale and more fruitful with resources. Operating the 

system successfully on the Bangalore bridge makes it more possible to use in actual facilities. 

This new approach stands out because it improves upon the static limits of traditional SHM 

systems by offering adaptive learning, better endurance to noise and higher success in detection 

during dynamic and varying weather. Such improvements meet the demands of today’s smart cities, 

in which autonomous, smart and environmentally friendly surveillance is rapidly becoming 

required. 

 

6. CONCLUSION 

This research develops an advanced and intelligent system for continuously monitoring 

urban infrastructure using deep learning, wireless sensors and edge computing. The combined 

CNN-LSTM model was able to spot structural faults accurately and dependably in both fake 

scenarios and in actual sites. With edge computing, both responsiveness and the amount of latency 

were improved, highlighting its relevance for use in smart cities. In a recent case study, the use of 

this framework demonstrated its down-to-earth design, financial flexibility and feasibility in 

managing present-day infrastructure. The system delivered more accurate results, fewer false 

alarms and better energy efficiency than other commonly used SHM approaches. 

In the future, we could see drones added to do visual inspections, as well as blockchain 

being introduced to keep the data from important inspections safe and un-alterable. The framework 

we propose provides a valuable approach toward smart cities having systems that can predict, act 

on their own and remain stable. 
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