
 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-19

An Effective FPGA Implementation of Denoising of Impulse Noise in

Images

A.Jeniffer
1
, S.Haripasath

2
, S.Chinthamani

3
, G.Chitra

4
, V.Karthiga

5

1,2,3,4,5
Department of Electronics and Communication Engineering

Saranathan College of Engineering, Trichy, India
1
ajeniffer94@gmail.com,

2
hariprasadh@yahoo.com,

3
chintha93@gmail.com

Abstract: Noise filtering and image enhancement are two applications of great importance in the field of image processing.

The final image is an essential part of any image processor, whether it is used for visual interpretation or automatic analysis.

Images are degraded by various types of noise during image acquisition and transmission. One such noise affecting nearly all

images is the noise of the impulse. In this work, an efficient detection and removal scheme is proposed for the presence of

noise from impulses in images. Subsequently, the VLSI architecture is also proposed using a Virtex family of FPGAs. In the

proposed work in 4 stages the noise detection and reconstruction of the pixel from noise is performed. Compared to the

existing techniques, the amount of hardware calculations is reduced in the proposed work, which could therefore be used for

real - time applications.

Keywords: Edge Preserving Filter, FPGA Implementation, Impulse noise, Image Denoising, Sorting.

1. INTRODUCTION

In the fields of Medicine, Forensics, Remote Sensing,

Communication, Industrial Automation, Defense, Robotics,

Traffic Control, etc.,. Image Processing is an assuring area

of research. The acquired image should be de-blurred and

noise free in order to have a very good visual display in

different applications. Noise corrupts images during the

acquisition process, transmission, storage and retrieval, so it

is important to effectively suppress the noise without

perverting the image's edges and fine details. Digital images

are often corrupted due to transmission errors,

malfunctioning pixel elements in camera sensors, defective

memory locations and analog to digital conversion timing

errors. An important feature of pulse noise is that only part

of the pixels are corrupted and the rest are free of noise.

Noise from impulses is fixed and randomly valued. In the

noise of a fixed impulse, the noisy pixel values in gray -

scale images are either maximum (white, 255) or minimum

(black,0). The image therefore contains dark and white

spots, so it is also called the noise of salt and pepper. For

gray - scale images, the values of noisy pixels corrupted by

randomly valued impulse noise are distributed uniformly in

the range [0 to 255].

2. EXISTING METHODS

Different methods for identification of presenceof noise in

the image under consideration werereported earlier

[3],[4],[5],[6],[7]. In the works discussed in [3],[4] mean

filters are used which cause blurring of the image. Hence, it

is not suitable. In J. Ko‟s work[7] the weight values are

assigned for individual pixels and using median filters

impulse noise was removed but here both noisy and noise

free pixels are affected. In another work reported by F.

Ahmed [5], alpha Trimmed Mean Filter is used. The

disadvantage is for lower values of d(a parameter used

here) it resembles mean filter but for higher values of d it

resembles median filter.In the work proposed by I.

Aizenberg and C. Butakoff [6] rank order based method is

used for noise detection and removal. But here the

disadvantage is if a pixel is not corrupted but still has

highest or lowest rank it will be identified as an impulse.

Hence an effective switching based median filter is used in

this paper. This paper's content is organized as follows. The

steps in our proposed method are described in Section III.

Section IV provides the results of the proposed work for

simulation and synthesis. Finally, the future work,

conclusions and perspectives are provided in section V and

VI.

mailto:1ajeniffer94@gmail.com
mailto:2hariprasadh@yahoo.com
mailto:3chintha93@gmail.com

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-20

3. PROPOSED METHOD

In our design, we have taken an input noisy image of size

(256×256) 8- bit grey scale image and a mask of size (3×3).

The (3×3) mask is shown is figure 1.

Figure 1. 3X3 portion of the image under consideration

First the mask is applied to the top left corner of the image

and only that portion of the image is extracted and

processed accordingly. Then the mask is slided successively

to next pixel location to cover the entire image and is

processed. Let the pixels covered by the mask be labeled as

fi,j for center pixel and a ,b ,c ,d ,e ,f,g ,h for neighboring

pixels. The mask's adjacent pixels are divided into the top

and bottom half. The top-half values consists of {a, b, c, d}

and the bottom-half values consists of {e , f, g ,h } and is

given by

Tophalf = {a, b, c, d}; Bottomhalf = {e , f, g ,h }

The decision whether or not the pixel is noisy is based on

the correlation between the pixel fi, j and its adjacent pixel.

This detection is based on whether the pixels are located on

smooth region or not. A region is said to be a smooth region

if the pixels values are slightly varying with each other, i.e

the difference between the pixel values with their neighbors

is small. This help to isolate the pixel value If the gray scale

value difference between the pixel fi,j and the neighboring

pixels is large it is an isolation point.

4. ISOLATION MODULE

In order to determine the isolated point from the smooth

region, the maximum value and minimum value in the top

half { a, b, c, d }, the maximum value and minimum value

in the bottom half { e, f, g, h } are also determined. The

difference between the maximum value and the minimum

value in the top-half is calculated in order to obtain the top-

half_diff. Similarly the difference between the maximum

value and minimum value in bottom-half is calculated to

obtain bottom-half_diff. This difference is calculated to

determine whether the surrounding region belongs to a

smooth region or not. A threshold value is now used to

determine whether or not the pixels are in the smooth area.

So the selection of the threshold value is an important

factor. Determine the threshold value Th_IMa. If, either

top-half_diff value or bottom-half_diff value is greater than

the threshold value Th_IMa is considered noisy or noise -

free. To decide whether the pixel is in a smooth region, the

isolation module is used.

𝑇𝑜𝑝𝐻𝑎𝑙𝑓_𝑑𝑖𝑓𝑓 = 𝑇𝑜𝑝𝐻𝑎𝑙𝑓_𝑚𝑎𝑥 − 𝑇𝑜𝑝𝐻𝑎𝑙𝑓_𝑚𝑖𝑛

𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓_𝑑𝑖𝑓𝑓

= 𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓_𝑚𝑎𝑥

− 𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓_𝑚𝑖𝑛

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐼 =

𝑡𝑟𝑢𝑒, 𝑖𝑓(𝑇𝑜𝑝𝐻𝑎𝑙𝑓_𝑑𝑖𝑓𝑓 ≥ 𝑇𝑕_𝐼𝑀𝑎)

 𝑜𝑟(𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓_𝑑𝑖𝑓𝑓 ≥ 𝑇𝑕_𝐼𝑀𝑎)
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

DecisionI tells whether the surrounding region belongs to a

smooth region. Next, we take centre pixel into

consideration. The difference between fi, j and TopHalf

max and the difference between fi,j and TopHalf_min is

compared to another Th_IMb threshold.

𝐼𝑀_𝑇𝑜𝑝𝐻𝑎𝑙𝑓

=

𝑡𝑟𝑢𝑒, 𝑖𝑓(|𝑓𝑖, 𝑗 − 𝑇𝑜𝑝𝐻𝑎𝑙𝑓_𝑚𝑎𝑥| ≥ 𝑇𝑕_𝐼𝑀𝑏)

 𝑜𝑟(|𝑓𝑖, 𝑗 − 𝑇𝑜𝑝𝐻𝑎𝑙𝑓_𝑚𝑖𝑛| ≥ 𝑇𝑕_𝐼𝑀𝑏)
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

𝐼𝑀_𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓

=

𝑡𝑟𝑢𝑒, 𝑖𝑓(|𝑓𝑖, 𝑗 − 𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓_𝑚𝑎𝑥| ≥ 𝑇𝑕_𝐼𝑀𝑏)

 𝑜𝑟(|𝑓𝑖, 𝑗 − 𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓_𝑚𝑖𝑛| ≥ 𝑇𝑕_𝐼𝑀𝑏)
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐼𝐼 =

𝑡𝑟𝑢𝑒, 𝑖𝑓(𝐼𝑀_𝑇𝑜𝑝𝐻𝑎𝑙𝑓 = 𝑡𝑟𝑢𝑒)

 𝑜𝑟(𝐼𝑀_𝐵𝑜𝑡𝑡𝑜𝑚𝐻𝑎𝑙𝑓 = 𝑡𝑟𝑢𝑒)
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

The combined result of decision I and decision II tells us

whether the centre pixel is an isolation point or not.

Figure 2. Architecture of Isolation module(TopHalf)

a b c

d f (i,j) e

f g h

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-21

The architecture for the Isolation Module consists of the

following components as shown in fig 2. Two comparators

CMPl and CMPs are used.CMPl is used to output the larger

value for top-half and bottom-half.

The CMPs comparator is used to display the smaller value

for the top half and bottom half. The subtractor is used to

determine the difference between the max value and the

min value in the top and bottom half. The greater

comparator is used for comparing these subtracted values

with threshold valuleTh_IMa for both top-half and bottom-

half. |SUB| is used to find the absolute value of difference

with the outputs obtained from CMPl and CMPs with fi,j

for top-half and bottom-half. Then the greater comparator is

used for comparing the above two values with the threshold

Th_IMb for both top-half and bottom-half. The output from

these two greater comparator is OR ed to obtained the

output for IM_Top Half and IM _Bottom Half. Then it is

multiplexed to get the required output of whether the pixel

is an isolation point or not.

5. FRINGE MODULE

The fringe module is used to determine whether there is an

edge or not. If the center pixel value differs greatly from the

adjacent pixel value, it is necessary to determine whether it

is a noisy pixel or an edge pixel, so that the fringe module is

used for this purpose. For the determination of the edge we

consider four directions E1,E2,E3,E4 as shown .

Figure 3. Four directions

We can determine the edge by finding the absolute

difference between f (i,j) and the other two pixels in each

direction. The equations are given below,

The edge differences are calculated in each direction and it

is compared with the thresholdsTh_FMa and Th_FMb. The

result from all the directions are combined and a decision is

made whether the pixel is in edge or not. If it is an edge

pixel, then it is a noisefree pixel.

 The architecture of fringe module is shown in fig.4.The

four sub modules FM_1, FM_2, FM_3 and FM_4 each

determining the directions E1, E2, E3 and E4 respectively

are combined to form the Fringe Module output.

Figure 4. Architecture of Fringe Module

a b c

d Fi,j e

f g h

a b c

d Fi,j e

f g h

a b c

d Fi,j e

f g h

a b c

d Fi,j e

f g h

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-22

Figure 5. Architecture of FM_1 Module

The fig 5 shows the detailed architecture of FM_1 which

corresponds to the direction E1. It consists of absolute

subtractor, greatest comparator and a NOR gate. Since the

FM 1 determines the E1, it consists of pixels a, h and fi,j.

To determine the absolute difference between the three

|SUB| units. If the upper input is greater than the lower

input for all three |SUB| units, the larger comparator will

output logic 1. The output from the greater comparator is

NORed to produce the FM_E1. If the result is positive fi,j is

on an edge. The same procedure is carried out for FM_2,

FM_3 and FM_4 with each sub module including the pixels

in that direction.

6. SIMILARITY MODULE

To confirm whether the the pixel is noisy or noisy free, the

similarity module is used. This considers that the median

value will be located in the center while the noise will be at

the end of the variational series. In order to detect whether

the pixel is noisy or not, we sort the values in the mask in

ascending order to obtain the 4th, 5th and 6th values close

to the median in the mask. The max and min value are

found by considering the following equation.

𝑀𝑎𝑥𝑖 ,𝑗 = 6𝑡𝑕 𝑖𝑛 𝑊𝑖,𝑗 + 𝑇𝑕_𝑆𝑀𝑎

𝑀𝑖𝑛𝑖 ,𝑗 = 4𝑡𝑕 𝑖𝑛 𝑊𝑖,𝑗 − 𝑇𝑕_𝑆𝑀𝑎

A max and min limit is set so as to determine whether the

value is noisy pixel or not. The equations are given below

𝑁𝑚𝑎𝑥

=

𝑀𝑎𝑥𝑖 ,𝑗 , 𝑖𝑓(𝑀𝑎𝑥𝑖 ,𝑗 ≤ 𝑀𝑒𝑑𝑖𝑎𝑛𝐼𝑛𝑊𝑖 ,𝑗 + 𝑇𝑕_𝑆𝑀𝑏)

𝑀𝑒𝑑𝑖𝑎𝑛𝐼𝑛𝑊𝑖,𝑗 + 𝑇𝑕_𝑆𝑀𝑏 , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

𝑁𝑚𝑖𝑛

=

𝑀𝑖𝑛𝑖 ,𝑗 , 𝑖𝑓(𝑀𝑖𝑛𝑖 ,𝑗 ≥ 𝑀𝑒𝑑𝑖𝑎𝑛𝐼𝑛𝑊𝑖 ,𝑗 − 𝑇𝑕_𝑆𝑀𝑏)

𝑀𝑒𝑑𝑖𝑎𝑛𝐼𝑛𝑊𝑖,𝑗 − 𝑇𝑕_𝑆𝑀𝑏 , 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

If the value of f(i,j) is not between Nmax and Nmin, it is

considered to be a noisy pixel otherwise noise - free. The

equation is presented by

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐼𝑉 =
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑓𝑖,𝑗 ≥ 𝑁𝑚𝑎𝑥 𝑜𝑟 𝑓𝑖 ,𝑗 ≤ 𝑁𝑚𝑖𝑛

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

Figure 6. Architecture of Similarity Module

The architecture of similarity module is shown in fig. 6. It

consists of adder and subtractors for calculating the

maximum and minimum values and greatest comparators

and mux for determining whether the pixel is within

particular range or not.

7. EDGE PRESERVING FILTER

An edge preserving technique is used to recover the noisy

pixel and at the same time preserve fine details like edges.

Here first order derivative of edge preserving filter is used.

For this we consider eight directional differences D1 to D8.

This edge preserving filter first calculates these directional

differences and find the minimum directional difference.

The eight directional differences are given below

𝐷1 = 𝑑 − 𝑕 + 𝑎 − 𝑒

𝐷2 = 𝑎 − 𝑔 + 𝑏 − 𝑕

𝐷3 = 𝑏 − 𝑔 ∗ 2

𝐷4 = 𝑏 − 𝑓 + 𝑐 − 𝑔

𝐷5 = 𝑐 − 𝑑 + 𝑒 − 𝑓

𝐷6 = 𝑑 − 𝑒 ∗ 2
𝐷7 = 𝑎 − 𝑕 ∗ 2
𝐷8 = 𝑐 − 𝑓 ∗ 2

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-23

If the directional difference is small, there will be edge

existing in that direction. So the mean luminance value in

that direction is calculated. The equations for calculating

mean luminance value is given by,

𝑓 ′𝑖, 𝑗 =

𝑎 + 𝑑 + 𝑒 + 𝑕

4
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷1,

𝑎 + 𝑏 + 𝑔 + 𝑕

4
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷2,

𝑏 + 𝑔

2
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷3,

𝑏 + 𝑐 + 𝑓 + 𝑔

4
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷4,

𝑐 + 𝑑 + 𝑒 + 𝑓

4
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷5,

𝑑 + 𝑒

2
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷6,

𝑎 + 𝑕

2
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷7,

𝑐 + 𝑓

2
, 𝑖𝑓 𝐷𝑚𝑖𝑛 = 𝐷8.

Then we have used a standard median filter for

reconstructing the pixel precisely and the median is for f‟i,j

and 4-neighborhood pixels as given in below equation,

Fi,j=median (f‟i.j, b, d, c, g)

The architecture of Edge preserving filter consists of

minED generator and average edge generator.

Figure 7. Architecture of minED generator

The minED generator consists of twelve |SUB|, four ADD

four shifter units. The smallest directional difference is

determined by the min tree unit which consists of a series of

comparators. The output of this block is smallest directional

difference.

Figure 8. Architecture of average generator

The average output of the generator is the mean luminance

values of the pixels that process the smallest directional

difference (Dmin) and the average generator architecture is

shown in fig 8. After average luminance is calculated, f'i, j,

b, d, e and g are sorted to obtain the median value.

8. RESULTS

The simulation output is shown in fig9. Here there are 4

cases, each are explained separately below.

Figure 9. Simulation for (3x3) portion of the image

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-24

CASE 1:

From 200 to 300 ns, the pixel is in smooth region. There is

no noise in the centre pixel, so the detector output „n‟ will

be logic 0 and the same centre pixel (fi,j) is returned. For

example the screen shot is shown at 247.3ns in fig10.

CASE 2:

From 300 to 400 ns, the pixel is in smooth region but here

the centre pixel is noisy, so the detector output „n‟ will be

logic 1. The pixel is reconstructed using edge preserving

filter and it is returned. For example the screen shot is

shown at 360.7 ns in fig 11.

CASE 3:

From 400 to 500 ns, the pixel is in edge region. There is no

noise in the centre pixel, so the detector output „n‟ will be

logic 0 and the same centre pixel (fi,j) is returned. For

example the screen shot is shown at 441.3ns in fig 12.

CASE 4:

From 500 to 600 ns, the pixel is in edge region but here the

centre pixel is noisy, so the detector output „n‟ will be logic

1. The pixel is reconstructed using edge preserving filter

and it is returned. For example the screen shot is shown at

558.1 ns in fig 13.

Figure 10. Simulation for pixel in smooth region

Figure 11. Simulation for noisy pixel in smooth region

Figure 12. Simulation for pixel in edge region

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 3 March 2016

Copyright © 2016 Mélange Publications EC-25

Figure 13. Simulation for noisy pixel in edge region

The synthesis report is shown in table 1. Here we have used

virtex 4 family and the selected device is 4vfx12sf363-12.

Table 1. Synthesis Report

Logic utilization Used Available Utilization

 Number of Slices 855 5472 15

 Number of Slice

Flip Flops

32 10944 0

 Number of 4

input LUTs

1549 10944 14

 Number of

bonded IOBs

97 240 40

 Number of

GCLKs

1 32 3

9. FUTURE WORK

 Till now we have implemented only for a (3X3) portion of

an image. Our future work is to extend this to implement

for (256X256) grey scale image.

10. CONCLUSION

In this proposed work, the detection and removal of impulse

noise is carried out using various modules. As this method

uses only fewer amounts of resources as shown in Table I it

is more efficientthan previously reported works [3,4,5,6,7]

and the quality of the reconstructed pixels are highly

improved. Hence, theproposed method is suitablefor real

time applications.

REFERENCES

[1] Rafael C. Gonzalez and Richard E. Woods, Digital

Image Processing, Pearson Education, 2007.

[2] Samir Palnitkar, Verilog HDL (A guide to Digital

Design and Synthesis), SunSoft Press, 1996.

[3] S. Deivalakshmi and P. Palanisamy, “Improved

Tolerance Based Selective Arithmetic Mean Filter for

Detection and Removal of Impulse Noise,” IEEE Aug.

2010.

[4] Sun Qiaoping, “A Geometric Mean Based Adaptive

Local Noise Removal Algorithm,” IEEE Nov. 2005.

[5] F. Ahmed and S. Das, “Removal of High Density

Salt and Pepper Noise in Images With an Iterative Adaptive

Fuzzy Filter Using Alpha Trimmed Mean,” IEEE Oct.

2014.

[6] I. Aizenberg and C. Butakoff, “Effective Impulse

Detector Based on Rank-Order Criteria,” IEEE Mar. 2004.

[7] S. J. Ko and Y. H. Lee, “Center Weighted Median

Filters and Their Applications to Image Enhancement,”

IEEE Sep. 1991.

