
 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 4 June 2016

Copyright © 2016 Mélange Publications EC-5

Performance optimization on System on Chip using I²C Concept 6G

Computer

D.Kanimozhi
1
, P.Karthikeyan

2
, S.Kirthika

3

1
(Assistant Professor, ECE), M.Tech,

2,3
(Student), B.E (ECE)

1,2,3
C.K.College of engineering and technology, Cuddalore,INDIA.

1
kanimozhi.gk@gmail.com,

2
karthikeyanperumalece@gmail.com

Abstract: In this paper we deliberated the delay reduction in multi core processor on soc to perform multi tasking by means

of I
2
C concept and controlled cache memory. To embed multiple applications on the CHIP, control the process execution. In

that we are using EHCI (Embedded Host Controller interface) to communicate outside peripherals to chip. The special

concept disused dual mode of operation active and sleep mode .To execute overall system operation by means of embedded

OS.

Keywords: Cache , EHCI , I²C, SPARTEN 3E Kit, Xilinx 14.7 ISE Design Suite.

1. INTRODUCTION

The aim of the system is to reduce the delay on the process

execution by using System on chip concept. To build four

processor in asymmetric technique, Complex instruction set

computer, reduced instruction set computer and digital

signal processor are used. Thread level penalization method

is used, to utilize the memory space of chip. I
2
C concept

introduces two modes of operation active mode and sleep

mode. The system interfaces multiple applications such as

automation, wireless sensor networks, IOT and general

purpose embedded operation. Special embedded OS system

is used to control and monitor multiple applications. In

order to implement the system on soc with the help of

Verilog coding in Xilinx 14.7 design suit software and also

can be implemented with the help of Spartan 3e kit.

2. THE CHOSEN COMPUTATIONAL PROBLEM

The chosen problem was to compute using an asymmetric

technique. The general idea of asymmetric block is as

follows: multiple source data is first split into separate

blocks of fixed and equal length.

The above technique describes how the computed block

works with one data block. There are a few ways this

behaviour can be extended to multiple blocks. The one that

was chosen for this project is called first in first out

technique. In this method, each data block is processed

separately. The data blocks are treated in a fully-

independent manner, and therefore, this mode is well-suited

for designing a parallel algorithm.

3. PROCESSOR DESIGN AND RCHITECTURE

In this section, the architecture of the processor and its

interface is first presented. After that, the scalability of the

proposed architecture is discussed.

A. Interface

The processor has its own simple instruction set. It allows

the building of computing programs which operate on

different amounts of data.

It has to be done by directly inputting the binary content

into the Verilog design file. Still, the results multiple data

processing can be monitored on a set of appropriate outputs,

like LEDs.

It monitors and controls the temperature in surroundings

when using temperature sensor. Changes are indicated via

output device.

This can be upgraded by adding support for the desired

memory or interface type to the design, thus allowing data

input and output to be independent from PLD programming

files.

mailto:kanimozhi.gk@gmail.com

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 4 June 2016

Copyright © 2016 Mélange Publications EC-6

B. Schematics

The general architecture of the processor is presented in

Figure1. The processor core consists of four main modules,

called A, B, C, D, E and F. Additionally, there is also a

monitoring module which interprets user-control signals

and sends back their results via a specified output.

The monitoring module allows the switching of the output

signals indicators between different core modules, which

are especially useful when the number of outputs is limited.

This module is also able to trap execution of the program,

count the elapsed clock ticks, and detect idle statuses of

particular modules.

Therefore, it is able to determine the end of processing and

measure elapsed time automatically.

The embedded host control interface (EHCI) (labelled A)

can directs the outside peripherals to the respective

processor. It optimizes the overall process in a controlled

manner.

The sequential I
2
C processor (labelled B) is responsible for

the interpretation and execution of a user-defined program.

It executes all instructions of the program on demand.

The queuing module (labelled C) is responsible for

scheduling tasks received from the module B for the D

processors. A new task is scheduled for the first idle B

processor. If all D’s are busy, the task is put into an internal

FIFO queue. When the queue becomes full, further tasks

are not accepted until a place in the queue is freed.

After that, it starts processing the task. The processor

communicates with the cache and memory module, requests

the needed data, combines them, and stores the results back

in the memory.

The cache memory L1 (labelled E) is the most-passive

module. It holds the data and key for processing and allows

for concurrent access from all D modules. According to the

block queuing idea, the parts of data on which the

processors D operate should be separate, although some

safety mechanisms still have to exist in the design for

concurrent read/write problems. The priority solution was

chosen to minimize unnecessary overheads.

The parallel memory can store the data and valid

instructions. It drives data to cache memory to process the

data in the system.

C. Scalability

The processor architecture can be scaled. The main factor

which determines the speed of the processing is the number

of implemented D modules. The D modules can be treated

as the actual cores of the processor. Of course, there has to

be proper support for them from the adjoining A, B, C and

E modules.

It mostly means additional ports and buses, and rescaling of

the internal algorithms, which can be done by a

modification of the design files. Module A is - according to

its name EHCI makes interrupt for interface to the system.

Module B is - according to its name I
2
C sequential and not

meant to be scaled. Module C is – according to its name

queue and its way to process the data on the system.

In module E is – according to its name L1 cache and it has

execution EX1and execution EX2 with cache control can

drives the data effectively to the system.

4. PARALLEL CHARACTERISTICS

In the system Moore’s model was used for parallelization to

reduce the complicity and the function with the help of

Amdahl’s law.

In order to determine the quality and correctness of the

design, processor performance had to be measured. The

most basic metric that can be measured is the amount of

time needed to complete the processing, depending on data

size and number of cores used. From that, the standard

parallel computing characteristics can be derived. The

correctness of the processing was verified fairly easily. All

that was needed was to run the program twice and check

whether the memory content first shifts to an encrypted

form and then back to its normal shape.

Initial tests showed that a little-coarser granularity is

required to make full use of all 4 cores. That is why both

setup and result sections are split in two parts and cover

both the initial and final tests.

A. Experimental setup

For test purposes, both program for module A as well as

sample data and key stored in module F, had to be prepared.

Additionally, all the adjustable parameters of the processor

had to be determined.

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 4 June 2016

Copyright © 2016 Mélange Publications EC-7

Figure 1. Architecture of multi-core processor in SOC

The general test configuration is as follows:

• there are at most 4 parallel processors available (p = 1, . . ,

4),

•module B internal queue has 4 places

(which is more than enough),

• the memory consists of 32-bit words.

5. RESULTS

The results cover all possible combinations of problem size

n and number of processors p. The time T(n, p) was

measured in clock ticks automatically by the monitoring

module, so it is exact and independent of clock frequency.

For each set of parallel characteristics, two charts are

provided: one with a standard view: f(p) and n-dependent

data families and an alternate view: f(n) and p-dependent

data families.

Two main characteristics were taken for each case

• speedup S(n, p) = T(n,1) /T(n,p)

• efficiency E(n, p) = S(n,p)/p

A. Finer granularity

The processing times for all cases are shown in Table 1.

The values are ordered by the indices p and n. Always T(n1,

p1) ￢ T(n2, p2) where n1 ￢ n2, p1 - p2. So, the more

processors used or the smaller the problem size, the shorter

the processing time. It proves the correctness of the design

on a very basic level.

Table 1. Elapsed time – finer granularity

p/n 1 2 3 4 5 6 7 8

1 39 64 89 114 139 164 189 214

2 39 48 64 73 89 98 114 123

3 39 48 57 66 75 84 93 102

4 39 48 57 66 75 84 93 102

For n = 1, the values are all the same no matter how many

processors are used. By the time the fourth task is

generated, one of the Cs finishes its job and accepts the new

task, and so the fourth C processor is idle all the time. To

make real use of 4 cores, the task size should be bigger or

module A should work faster.

Figure 2. Speedup – finer granularity (standard view) .

Figure 3. Speedup – finer granularity (alternate view).

Figure 4. Efficiency – finer granularity (standard view).

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 4 June 2016

Copyright © 2016 Mélange Publications EC-8

Figure 5. Efficiency – finer granularity (alternate view).

Figure 5 shows that efficiency rise along with the problem

size. It means that the sequential part must decrease at the

same time. In this architecture, the sequential part can be

defined as the time when at least one C unit is idle, despite

the fact that there are still tasks that need to be processed

The B and D modules are working fast enough not to

produce any delays, so the only source of possible delays in

the design is the sequential processor B.

B. Coarser granularity

Processing times for all cases are shown in Table 2. The

results are quite similar but this time, the fourth core really

makes a difference.

The increased granularity gave module A, a chance to

occupy all of the C cores, while working at the same speed.

Table 2. Elapsed time - Coarser granularity.

p / n 1 2 3 4 5 6 7 8

1 63 112 161 210 259 308 357 406

2 63 72 112 121 161 170 210 219

3 63 72 81 112 121 130 161 170

4 63 72 81 90 112 121 130 139

It can also be noted that, for n = 4, the values are slightly

better than in the corresponding finer-granularity case with

n = 8. Figures 6 and 7 show the speedup characteristics.

The corresponding finer granularity chart presented in

Figure 2 had no crossed lines. Here in Figure 6, it can be

seen that speedup for p = 2 is better for n = 2 rather than 3.

The same situation is for p = 3 and n = 3, 4, or p = 4 and n =

4, 5. Also, the alternate view presented in Figure7 now has

a more-distinct shape. Any other values of n are less

optimal and cause speedup and efficiency drops.

Figures 8 and 9 present efficiency characteristics. Similar to

speedup, the peaks are located at full multiples n of p

values. Also, the bigger the problem size, the more the

distortions are scaled down; but, they still have the same

shape.

Figure 6. Speedup – coarser granularity (standard

Figure 7. Speedup – coarser granularity (alternate view).

Figure 8. Efficiency – coarser granularity (standard view).

Figure 9. Efficiency – coarser granularity (alternate view).

C. Corollaries

The time measurement is strict — it is not measured in real

time units but in the number of processing steps. Also, the

processor itself works in a determined way; and, for a given

task, it always needs the same number of steps to complete

 International Innovative Research Journal of Engineering and Technology
 ISSN: 2456-1983 Vol: 1 No: 4 June 2016

Copyright © 2016 Mélange Publications EC-9

it. Therefore, the measured values should not be random.

Indeed, a closer look reveals that all of them can be

described using a single formula:

T (n, p) ={di + y + dl(n − 1) + (y − dl · p)[n−1/p] if y > dl ·

p

di+ y + dl(n − 1) otherwise (1)

where:

di – initial delay [clock ticks] – total processing time before

the first command actually starts being executed by one of

the C processors;

dl –loop delay [clock ticks] – delay between generating

subsequent commands by the A processor (processing time

of all the instructions inside the loop1 of the program);

y –time needed to compute one data block consisting of x

memory words — it depends on a chosen algorithm and its

implementation in module C.

The additional part (y − dl · p) [n−1/ p] describes the fact

that, when the task size is too big (or, conversely, there are

too few processors), some tasks will have to wait until they

are generated before they will actually be processed. When

y < dl · p, it means that there is always a free C module to

handle a new task, and the speed of the processing is only

limited by the speed of module A. The y element in di + y +

dl (n − 1) corresponds to the

processing time of the last task, after module A has finished

its job.

The factor [n−1/ p] is an integer division. When y ≥ dl · p,

each p-th task has to wait y − dl · p cycles in queue before

being processed. The first task that has to wait is (p + 1)-th

task, followed by (2p + 1)-th, (3p + 1)-th, and so forth. Of

course, the formula (1) is only true for a user-defined

program.

The formula (1) is true for p = 1, where the C processor is

always busy. It is also satisfied for both considered

granularities even though the finer granularity does not use

fourth C processor at all. Based on that, the formula should

also be true for any valid range of parameters n, p, x, y, but

it was not tested in this experiment.

6. CONCLUSION

The project had two main goals to accomplish: first, design

a microprocessor multi core architecture which would show

the significant improvement over sequential computing; and

second, make this architecture scalable.

The achieved results did show an improvement with

speedup reaching 1.85 with two cores and 2.92 with four

cores active. This yields the efficiency of 0.93 and 0.73

respectively. Additionally, the sequential part decreases

with the problem size, so the characteristics should be even

better with more tasks to process.

The architecture is also scalable. It had already been

rescaled from 2 cores to 4 in its current shape, so further

expansion seems limited only by the number of necessary

repeatable changes in the design files. But this still could be

managed with the help of appropriate Verilog commands.

REFERENCES

[1] R. Kumar et al., ―Single-ISA Heterogeneous Multi-

Core Architectures: The Potential for Processor Power

Reduction,‖ Proc. 36th Ann. IEEE/ACM Int’l Symp.

Microarchitecture, IEEE CS Press, 2003, pp. 81-92.

[2] Nitin Chaturvedi1 S Gurunarayanan2: study of

various factors affecting performance of multi-core

processors, International Journal of Distributed and Parallel

Systems, (IJDPS) Vol.4, No.4, July 2013.

[3] Manoj Kumar Gouda, D.Yugandhar: Design of

Multi-core Processor using Multithreading Technique, Blue

Eyes Intelligence Engineering & Sciences Publication Pvt.

Ltd, October 2014.

[4] Christian Märtin, Multi-core Processors:

Challenges, Opportunities, Emerging Trends, embedded

world Conference 2014.

[5] Verilog Hardware Description Language Reference

Manual, http://ecad.tu-sofia.bg/soc/data/verilog/verilog.pdf

[6] Digital Circuit Design Xilinx ISE Tools,

http://www.Xilinx.com/products/software/products/ Xilinx

ISE Tools -index.html.

http://ecad.tu-sofia.bg/soc/data/verilog/verilog.pdf

