
                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-10 

 

Lateral Computing Models and Study of OpenMP Enhancement and 

Xeon Processors 
 

R. Sujith 

Department of Computer Science Engineering 

Cihan University – Duhok, Kuridsitan Region Iraq 

 

Abstract: With the expanding information sizes and intricacy of calculations, and halt came to in processor clock 

recurrence because of energy limitations, multi center and numerous center CPUs and GPUs have been produced for 

parallel registering. This has turned into an inescapable approach for high volume information handling, for example, 

picture preparing. There have been a few APIS for parallel preparing created with included benefits and possibilities, for 

example, OpenACC, OpenMP, OpenCL and CUDA. Among these, the CUDA is implementable on NDVIDIA's GP-

GPUs. While others are implementable on multicore and numerous center CPUs and GPUs, incorporate Intel Xeon Phi 

co-processors. Here we audit both the equipment and programming structures of the gadgets and API. At that point, look 

at the execution of OpenMP 2.x API when utilized on Intel Quad Core i7 (8 strings) processor with double Intel Xeon 12 

center (48 strings) CPUs by enhancing a picture preparing code on bunching in multispectral include space utilizing 

remote detecting information. The most extreme speedup 5x is accomplished on Intel i7 center CPU and speedup of 13x 

is accomplished on Intel Xeon CPU by conjuring dynamic booking when number of strings sent are expansive. Least and 

most extreme stack estimate required for various number of strings are likewise investigated. 

 

Keywords: Intel i7, Xeon, OpenACC, OpenMP, OpenCL, CUDA, Image Processing, K-Means Clustering 

 

 

1. INTRODUCTION 

 

The Remote Sensing applications and numerous different 

applications like Medical imaging, Multimedia 

Technology and progressed and quick designs utilized as 

a part of gaming programming and so on manage 

extensive volume of information which require time 

viable parallel information preparing calculations and 

procedures. Presently a day, the rapid PCs are accessible 

which contains numerous center and multi center 

processors and coprocessors with high arrangement for 

parallel calculation. Parallel Computing has turned into 

an unavoidable approach for high volume information 

preparing, for example, picture handling and furthermore 

expanding interest of continuous preparing of pictures. 

More established methodologies of multi center 

programming have been deplored and thus there is a need 

to create more up to date approaches that radically 

increment the speed and execution. 

There are diverse sorts of parallelism to accomplish 

parallel processing as far as programming. Initial one is 

the guideline level of parallelism, which removes the 

parallelism from a solitary direction stream taking a shot 

at a solitary stream of information which give low level 

of parallelism. Second is the processor level parallelism 

supporting in excess of one processor utilized for 

exceedingly parallel application in which general 

application is separated into subtasks and after that 

registered on multi-processor at the same time. Because 

of this, an application can use every one of the processors 

boosting the application execution. While there are 

superior PCs which contain expansive number of centers 

and multi-processors that can be at the same time utilized 

for figuring to get elite and speedier speed. For this, 

parallel application need to execute on numerous center 

and multi-processor engineering and require 

programming models that naturally scale with the 

quantity of processors or centers accessible and 

furthermore give synchronization between them. 

 

1.1 Parallel Processing on CPU/GPU 

 

In Remote detecting picture preparing, vast number of 

pictures are handled and tedious tasks are performed on 

pixels utilizing SIMD execution demonstrate on multi-

processor in parallel to show signs of improvement 

execution. There are numerous equipment and 

programming approaches for abusing abnormal state 

parallelism. Sorts of parallelism in equipment are Vector 

processor, SIMD direction, GPUs and multi-processors. 

While the Vector processor and SIMD guideline confine 

their parallelization highlights to a particular application. 

The GPU and multi-processor parallelization capacity is 

subject to programming model.  



                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-11 

GPU which is normally utilized for exceptionally parallel 

applications like PC illustrations and picture preparing, 

their very parallel structures make them more effective 

than General Propose CPU.GPU has an enormously 

parallel engineering comprising of numerous quantities of 

centers intended for taking care of various errands at the 

same time while CPU comprises of a couple of centers 

upgraded for consecutive/serial handling. Rather than 

utilizing capacities of CPU and GPU alone, it is more 

useful to utilize both the CPU and GPU converged on 

single incorporated circuit to expand better information 

trade rates and low power usage. The registering utilizing 

both the CPU and the GPU co-processors together is 

called Heterogeneous Computing. To Implements this 

framework, there are a couple of programming models 

like CUDA, OpenACC, OpenCL and OpenMP are 

proposed with their confinements and qualities. 

 

1.2 Heterogeneous Computing 

 

Heterogeneous figuring is a framework which contains in 

excess of one sort of processor. They are multi-center or 

numerous center processor frameworks which pick up 

execution not simply by including the comparable 

processors but rather by including the diverse sort of co-

processors to use specific preparing capacities for taking 

care of undertakings [2].  

Presently a day, information measure is constantly 

expanding and systems or strategies have been created for 

preparing. In any case, the calculation times goes past the 

time furthest reaches of their utility esteem. Along these 

lines, the Architectures which are quick as well as 

quicken the execution are should have been utilized. 

Consequently the attention is on CPU and GPU blend. It 

is one of the heterogeneous Architecture where the best 

highlights of both can be joined to accomplish 

significantly assist calculation pick up and low power 

utilization. To process expansive number of Remote 

detecting pictures in heterogeneous framework 

(CPU+GPU), it can give superior calculation power and 

lessening calculation time as opposed to utilizing CPU 

and GPU alone on the grounds that both CPU and GPU 

have unmistakable engineering highlight.  

In Heterogeneous Architecture of CPU+GPU based 

handling, the CPU is by and large referred to as Host and 

GPU as a Device and they can be depicted as the ace 

slave connection. GPU gadget is overseen by CPU. 

Multi-centers CPUs have centers up to couple of tens and 

Many-centers GPU have vast number of centers up to a 

couple of thousands at any rate. Design utilizes Flynn's 

Single Program Multiple Data (SPMD) and new Single 

Program Multiple Task (SPMT) execution models. 

Because of altogether different Architecture and 

programming models of CPU and GPU based 

heterogeneous registering, it introduces a few difficulties 

like run time stack on Processors(Pus)GPUs and 

accomplishing load adjusting amongst CPU and GPU on 

the grounds that the diverse number of centers among 

them. The appropriation of kind of work among the host 

and gadgets ought to be to such an extent that it uses the 

computational capacities maximally. It is watched that 

diverse measure of work-divisions to CPU and GPU can 

prompt unfathomably extraordinary execution. Numerous 

tests have been accounted for before for creating 

strategies for workload conveyance, programmed 

booking of calculation errands over heterogeneous 

figuring system(HCS)etc., and oversee information 

situation to accomplish better use of both processor forces 

to get quick handling, elite, less overhead required for 

correspondence between CPU-GPU and less power 

consumption[3].  

Distinctive Programming dialects can be utilized in view 

of simplicity of programming, capacity to compose 

advanced code, capacity to focus on numerous Pus and 

item from various sellers and so on. The CUDA 

programming works just on NVIDIA's GPUs and 

utilizations the ACML (AMD Core Math Library). The 

OpenMP is most generally utilized because of its 

convenientce and relative simplicity of programming in 

view of compiler orders. OpenMP chips away at both 

Intel Xeon Processor and Intel Xeon phi co-processor to 

accomplish heterogeneous registering [3]. Because of the 

multifaceted nature of programming on GPU, porting a 

logical application to the heterogeneous parallel 

framework is a testing assignment. Accordingly, some 

most recent research, for example, MPtoStream, a 

compiler for broadened OpenMP on AMD's High 

Performance GPUs has been created. [4] 

 

1.2.1 CUDA Programming 

 

NVIDIA CUDA (Compute Unified Device Architecture) 

is an API for parallel figuring. It is a Programming model 

gives multi-strung Single Instruction Multiple Data 

(SIMD) display for actualizing calculation on GPUs. The 

CUDA exploits huge calculation energy of GPU by using 

expansive number of co-processor centers to the software 

engineer. Its registering stage empowers conveying fine-

grained (string level) and coarse-grained (square level) 

information and assignment parallelism utilizing the 

expanded C and C++ dialects. In fine grained approach, 

after every guideline cycle, the exchanging between 

multithreads is finished with slack in the execution of 

each string. What's more, interestingly, in coarse grained 



                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-12 

approach, the exchanging between the multithreads 

happens when the current string causes some long 

inertness occasion. CUDA Programmer can likewise pick 

an abnormal state programming dialect, for example, C, 

C++ or FORTRAN for parallel programming and these 

dialects additionally bolster programming structures, for 

example, OpenACC and OpenCL which give compiler 

orders used to parallel programming in both the 

homogeneous and heterogeneous programming with CPU 

and GPUs. The CUDA gives abnormal state of 

parallelism and is the most noticeable strategy for 

GPGPU increasing speed, despite the fact that it is just 

upheld by NVidia GPU's design [1]. 

 

1.2.2 OpenCL Programming 

 

The Open Computing Language, OpenCL, is a structure 

for composing parallel projects that execute crosswise 

over Heterogeneous stages. It has been intended to be 

utilized with GPUs as well as in different stages like 

multi-center CPUs. Likewise, it stretches out help to 

AMD, NVidia and Intel GPUs similarly. The 

fundamental outline objective of OpenCL is to utilize 

every computational asset of the framework by proficient 

utilization of parallel programming model in view of C99 

augmentations and it additionally characterizes a 

multilevel memory show. In parallel application, the 

OpenCL executes serial code on have (both mono center 

and multi-center CPUs) strings utilizing errand 

parallelism and parallel code in numerous gadget (GPU) 

strings utilizing information parallelism over different 

handling component. Like CUDA, the OpenCL is 

appropriate for SPMD parallel outline design. Presently a 

day, CUDA and OpenCL are most unmistakable for 

GPGPU systems however CUDA is constrained to 

NVidia Framework. Consequently, it doesn't cover more 

extensive scope of kinds of utilizations as OpenCL [1]. 

 

1.2.3 OpenMP Programming 

 

OpenMP is Programming Model stands for Open 

Specification for Multi-Processing. OpenMP is called 

mandate based programming model for shared memory 

multi-processor utilizing multithreading to create parallel 

application in C, C++ and Fortran Programming 

Languages. The OpenMP Application Program Interface 

(API) furnishes a software engineer with a basic and 

adaptable interface for building convenient parallel 

applications. It permits parallel execution on multi-center 

or many-center co-Processor by applying OpenMP 

Directives in client characterized code locale. It is the 

software engineer obligation to take focal points of string 

parallelism utilizing OpenMP Directives. In Directive 

based Programming model endeavors are very little 

required to alter existing code composed for 

homogeneous CPUs. It is anything but difficult to get 

advanced code with OpenMP Programming Model 

without the misfortune in execution. 

 

Table 1. Comparison of OpenCL, OpenMP and CUDA 

[18] 

 

  OpenCL OpenMP CUDA 

Type  Heterogeneou Heterogeneou GPGPU 

  s   CPU-GPU s Computin 

  Computing CPU-GPU g 

   Computing  

Parallelism Data Data Data 

  Parallelism Parallelism Parallelis 

  and and Task m 

  Task Parallelism  

  Parallelism   

     

Language or C99 and Directives C,C++ 

library  C++11 for extensions 

  extensions C,C++AND  

   FORTRAN  

offloading clEnqueue Target device Kernel 

    <<<…>> 
    > 

Explicit data bufferWrite Map cudaMem 
mapping and function (to/from/ cpy 

movement  tofrom/alloc) function 

     

Mutual  atomic Locks, atomic 

Exclusion  critical,  

   atomic,  

   single.  

Error  exception omp cancel _ 

Handling     

     

 

OpenMP Implements the fork-join model to accomplish 

parallelism. The idea of ace slave connection where the 

ace string keeps running on have CPU and the slave 

strings keep running on GPU device(s) to quicken the 

execution. Numerous to a great degree parallel code 

squares can contain information reliance. To accomplish 

parallelism, it is required to identify such reliance, group 

its sort of reliance and expel the reliance. It is insufficient 

to apply the OpenMP Directives for upgrading execution, 

a few different components are likewise influencing like 

parallel overhead and circle booking. In parallel 

programming applications, for the circle level parallelism 

the OpenMP is more proficient. Along these lines, the 

usage of GPU is more proficient in parallel registering [5, 

7].  



                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-13 

1.2.4 OpenACC Programming [20]  

 

OpenACC, which remains for Open Accelerators, is one 

of the programming principles or API for parallel and 

heterogeneous figuring created by Cray, Caps, NVidia 

and PGI. The OpenACC is an order based programming 

model (like OpenMP) which is an accumulation of 

compiler orders to distinguish circles and locales of code 

in standard C,C++ and Fortran from have CPU to a 

joined numerous center gadgets. Along these lines, it 

doesn't require all the more programming endeavors to 

quickening agents. The OpenACC mandates give 

transportability crosswise over multi-center CPUs and 

also quickening agents (GPUs) of different sorts, not 

simply NVidia GPUs, including many-center processors 

like Intel Xeon phi chips from Intel. 

 

Table 2. Comparison of directive based Programming 

Models[20]. 

 

 OpenACC OpenMP  
    

Target Focused  on Focused on 

 Accelerating general purpose 
 Computing Computing 

Approach Descriptive Prescriptive 
    

Interoperabi Extensive Limited  
lity interoperabil interoperability 
 ity   

Mutual Atomic Locks, critical, 
exclusion  atomic,  
  single and master 

Join wait Task wait  
   

 More mature More mature for 
 for multi-core  
 accelerators   

 

With the OpenACC Directives, the programming 

endeavors required for parallelization is higher in contrast 

with Cuda and OpenCL, while OpenMP and OpenACC 

are same as far as exertion required for Programming. Be 

that as it may, they are very extraordinary regarding 

usage. OpenACC was produced by a portion of the 

OpenMP individuals because of which it got advantages 

of wide range quickened frameworks. A portion of the 

highlights of OpenMP, for example, information orders 

were first created in OpenACC. The principle contrast 

between them is that the OpenACC targets versatile 

parallelism by indicating that a circle as a parallel circle. 

Presently its compiler's obligation to run this as quick as 

conceivable on the equipment. The OpenMP targets more 

broad parallelism at assignment level, which is innately 

not adaptable and furthermore, it is prescriptive which is 

particularly coordinated by software engineer it might be 

quality and in addition shortcoming moreover. OpenMP 

have a bigger number of highlights than OpenACC.  

However, the GPGPU gives high parallelism and quick 

calculation speed for parallel applications, yet its 

programming multifaceted nature displays a noteworthy 

test for engineer and has been extraordinarily streamlined 

by presenting enhanced library capacities for better 

memory administration [21]. Despite the fact that the 

CUDA Programming model was produced particularly 

for NVIDIA GPU, yet programming GPU is as yet 

intricate when contrasted with programming to General 

Purpose CPU and Intel Xeon phi co-processor/Processor 

utilizing parallel programming model, for example, 

OpenMP. Subsequently, there has been inquire about 

endeavors on improvement of Techniques in view of 

Compiler system for programmed source to source 

interpretation of standard OpenMP application into 

CUDA-based GPU[7]. The OpenMP v4.0 [6] has 

Directives to program quickening agent and new 

Directives to address issues like the administration of a 

common memory numerous center quickening agent. 

OpenMP v4.0 centers around most recent Intel Xeon phi 

co-processor and processor advancements. OpenMP v4.0 

contains some key mandates like "target" which order and 

load for the execution onto a gadget and the "guide" 

proviso for determination of information thing to be 

exchanged to and from the gadget. The "objective 

information" mandate permits apportioning and exchange 

information before the real offload happens and the 

"gadget" condition permits indicating the correct gadget 

to be utilized if more than one is available in the 

framework. [18] 

 

2. DYNAMIC SCHEDULING IN OPENMP 

 

The same number of parallel programming strategies are 

accessible, we have checked on their individual 

advantages and confinements which thus influence how 

well they perform for various applications. Here, we 

utilized OpenMP API, since it is order based convenient 

programming. The compiler naturally overlooks the 

mandates on the off chance that they don't bolster 

OpenMP. The mandates are perceived and prepared by a 

compiler; they likewise offer open doors for compiler-

based improvements [5].  

We assessed the execution of K-Means grouping 

calculation on Intel® Quad Core™ i7-4790@3.60 GHz 

processor and furthermore on two Intel® Xeon® 12-

center processor E5-2680 v3@ 2.50 having 16 GB 

Primary Memory. The Intel® Core™ i7-4790 being Quad 

Core Processor gives most extreme 8 coherent strings and 



                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-14 

Intel® Core™ i7-4790 have 2 processors with 12 centers 

each giving greatest 48 sensible strings (2 intelligent 

strings for every center). We have utilized the Microsoft 

Visual Studio extreme 2012, which bolsters OpenMP 2.0 

standard. We have utilized "OMP_GET_WTIME" work 

for ascertaining execution time per cycle in millisecond. 

The OpenMP is extremely helpful on the off chance that 

we utilize the compiler mandates at correct place in the 

application. It gives productive execution and pick up 

application execution.  

We watched that the execution on both the processors 

execution time get decreased as we increment the 

quantity of strings. A few conditions of OpenMP like 

schedule(dynamic) are just compelling when countless 

are sent. In Fig 5 and 6, it is demonstrated that the impact 

of number of strings on various orders. The execution 

time gets decreased from 12.8 milliseconds by utilizing 

orders "#pragma omp parallel for" with plan (dynamic) 

for 48 strings and it is reduced to 1.4 millisecond for 8 

threads. Therefore, here we can observe that it is not 

enough to increase number of threads but also it is 

required to insert appropriate OpenMP directives in 

parallel code to enhance performance. We have compared 

the k-means clustering algorithm on Intel® Core™ i7-

4790@3.60 GHz Processors and Intel® Xeon® Processor 

E5-2680 v3@ 2.50 GHz processors with 16 GB Primary 

Memory in Fig 7 and Fig 8, respectively. We have taken 

different Numbers of threads and execution time per 

iteration in both processors. We have used time per 

iteration rather than total time, which depend on the 

number of iterations required for same set convergence 

criterion. The total time for same convergence depends 

on the initial cluster centres chosen. By utilizing all 48 

logical threads available on two 12-Core Xeon 

processors, we have got 2x more speedup as compared to 

Intel® Core™ i7-4790 processor having 8 logical 

threads. 

 

 
 

Figure 1. Comparision of OpenMP Directives  

for 8 Threads. 

 
 

Figure 4. Optimize the K-Means algorithm using 

OpenMP directives. 

 

 
 

Figure 6. Comparision of OpenMP Directives for 48 

threads 

 

Here, We have likewise ascertained the speedup factors 

for Intel® Quad Core™ i7-4790@3.60 Processor 

(greatest 8 sensible strings) and Intel® two 12 Core 

Xeon® Processor E5-2680 v3@2.50 Processors (most 

extreme 24 coherent strings) with OpenMP and without 

OpenMP and thought about in Fig 9 and Fig 10, 

separately. If there should be an occurrence of Intel® 

Core™ i7-4790@3.60 Processor with 8 strings, we have 

accomplish most extreme speedup of 4.3x while if there 

should be an occurrence of Intel® Xeon® Processor E5-

2680 v3@ 2.50 Processor with 48 strings, the speedup 

accomplished is14.2x. This high speedup is accomplished 

regardless of the Xeon processor is slower in speed 



                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-15 

contrasted with i7 processor. This is ascribed for the most 

part to the substantial number of strings accessible on 

framework with Xeon processors and furthermore 

because of the dynamic booking of the strings.  

In the processors of accomplishing the streamlining 

utilizing OpenMP, the stack measure allocation assumes 

an imperative part. Contingent upon the extent of 

information being taken care of, there is least size 

prerequisite and furthermore greatest stack measure 

required is dictated by the quantity of strings. Greatest 

stack estimate conceivable is 2 GB with Windows OS. 

On the off chance that the stack estimate lower than least, 

the whole information can't be held in memory. On the 

off chance that stack is substantial, it is discovered that 

the framework invests more energy is information 

exchanges between the essential memory (RAM) and the 

store memory, bringing about the expanding in time of 

information handling and loss of preferred standpoint 

increased through OpenMP advancement. We have broke 

down the passable min and max stack sizes for 

accomplishing streamlining. 

 

 
 

Figure 7. Performance wrt Number of threads on Intel® 

nCore™1 i7-4790 Processor 

 

 
 

Figure 8. Performance wrt Number of threads on Intel®  

Xeon® Processor E5-2680 v3 

Fig.11 demonstrates the variety of the base Stack measure 

prerequisite with number of strings when the code 

advancement. We get the diminishment in least stack 

examine to 2MB from 60 to 62 MB by advancing the 

code utilizing OpenMP. The base stack measure 

necessities relies upon the volume of the information 

being prepared. With the expansion volume of 

information, it increments directly in extent to the 

information volume. This reliance is appeared in Fig. 12. 

 

 
 

Figure 9. Speedup on intel®TM  i7-4790@3.60 Proeessor 

 

 
 

Figure 10. Speedup on intel® Xeon® Processor E5-

2680v3@2.50 Processor 

 

The execution time per emphasis stays close consistent up 

to some particular stack measure and from that point, it 

increments in by a factor of more than 2. We have 

watched that particular stack estimate likewise shifts with 

number of strings as it is appeared in Fig 12. Past the 

Maximum Stack measure for a given number of strings, 

the time shaved in code advancement is overpowered by 

CPU-RAM information exchange times. We watched that 

the greatest stack measure allowed per string is almost 

conversely corresponding to the quantity of strings. The 

item the maximum size and number of strings is about 

consistent at 1.8 GB. One string can utilize 1.8 GB (the 

most extreme accessible stack measure) and, as number 

of strings increment, the maximum stack estimate 

mailto:i7-4790@3.60
mailto:v3@2.50


                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-16 

permitted diminishes and at last 48 strings can upgrade 

even with stack size of around 40 MB. The result of 

number of strings and max stack measure stays consistent 

at around 1.8GB. In our program executions for 

streamlining, the stack estimate set at close mean esteem 

contingent upon the most extreme number of strings 

utilized. 

 

 
 

Figure 11. Minimum Stack size requirement before and 

after code optimization for different number of threads. 

 

 
 

Figure 12. Minimum Stack size requirement for different 

number of data size factors wrt to 256*256 image size. 

 
 

Figure 13. Maximum Stack size variation with  

increasing number of threads. 

We additionally assessed the Stack measure required to 

accomplish appropriate improvement with OpenMP 

regarding number of strings when code enhancement. 

Least stack measure relies upon the volume of 

information being broke down. The greatest stack 

estimate considered a set estimation of number of strings 

diminishes with expanding number of strings. Add up to 

accessible stack memory of around 2GB is shared 

similarly among the number strings summoned. 

 

3. CONCLUSIONS 

 

Productive Parallel Programming Technique which are 

quick as well as quicken the execution that completely 

profits by frameworks by using the two processors and 

co-processors is a testing issue. In this Paper, we give an 

examination of OpenMP, CUDA, OpenCL and 

OpenACC Parallel Programming Techniques and we 

have look into their individual advantages and 

confinements, which progressively affect however well 

they perform for different applications and Hardware. 

CUDA and OpenCL are more unmistakable for GPGPU 

Programming and OpenMP most recent variant 4.5 gave 

Offloading orders to accomplish heterogeneous 

registering by using both CPU + GPU in Intel Xeon phi 

coprocessor. We additionally done the code advancement 

of k-mean bunching calculation utilizing OpenMP 2.0 

and dissected it on Intel® Core™ i7-4790@3.60 

Processor and Intel® Xeon® Processor E5-2680 v3@ 

2.50 and the trial result demonstrates that OpenMP order 

gives proficient outcome, if orders are embedded in 

perfect place and more number of strings are utilized. Our 

work additionally demonstrates the Performance and 

Speedup of Processors Intel® Xeon® Processor E5-2680 

v3@ 2.50 is high contrast with Intel® Core™i7-

4790@3.60.  

 

ACKNOWLEDGEMENT 

 

We are grateful to Shri T. P. Singh, Director, BISAG, for 

giving framework and consolation, and Special expresses 

gratitude toward Dr. C.K. Bhensdadia, Dharmsinh Desai 

University, Nadiad for allowing to complete this venture 

at BISAG. 

 

REFERENCES 

 

[1] Culler, David, et al., "LogP: Towards a realistic 

model of parallel computation." ACM Sigplan Notices. 

Vol. 28. No. 7. ACM, 1993. 

 



                                           

       

                         International Innovative Research Journal of Engineering and Technology 
                            ISSN: 2456-1983   Vol: 2 No: 3 March 2017 

Copyright © 2018 Mélange Publications                                                                                                                  CS-17 

[2] AMD-What is Heterogeneous Computing? 

http://developer.amd.com/resources/heterogeneous-

computing/what-is-heterogeneous-computing/ 

 

[3] Mittal, Sparsh, and Jeffrey S. Vetter, "A survey of 

CPU-GPU heterogeneous computing techniques." ACM 

Computing Surveys (CSUR) 47.4 (2015): 69. 

 

[4] Yang, XueJun, et al., "MPtostream: An OpenMP 

compiler for CPU-GPU heterogeneous parallel systems." 

Science China Information Sciences(2012): 1-11. 

 

[5] Rohit Chandra, Leonardo Dagum, Dave Kohr, 

DrorMaydan, Jeff McDonald, Ramesh Menon, 

“Exploiting Loop-Level Parallelism,” in Parallel 

Programming in OpenMP ,San Francisco, USA,2000 

 

[6] Newburn, Chris J. et al., "Offload compiler 

runtime for the Intel® Xeon Phi coprocessor." Parallel 

and Distributed Processing Symposium Workshops & 

PhD Forum (IPDPSW), 2013 IEEE 27th International. 

IEEE, 2013. 

 

[7] Lee, Seyong, Seung-Jai Min, and Rudolf 

Eigenmann, "OpenMP to GPGPU: a compiler framework 

for automatic translation and optimization" ,ACM 

Sigplan Notices 44.4 (2009): 101-110. 

 

[8] Capotondi, Alessandro, and Andrea Marongiu, 

"On the effectiveness of OpenMP teams for cluster-based 

many-core accelerators", in High Performance 

Computing & Simulation (HPCS), 2016 International 

Conference on. IEEE, 2016. 

 

[9] Intel Xeon Phi Product Family, 

https://www.intel.com/content/www/us/en/products/pro 

cessors/xeon-phi/xeon-phi-processors.html 

 

[10] Cramer, Tim, et al., "Openmp programming on 

Intel r Xeon phi tm coprocessors: An early performance 

comparison", in Proc. Many Core Appl. Res. Community 

(MARC) Symposium, 2012. 

 

[11] Intel Corporation, “Intel RXeonPhiTM 

Coprocessor Instruction Set Architecture Reference 

Manual,” September 2012, reference number 327364-

001. 

 

[12] Intel Pentium Processor,  

https://www.intel.com/content/www/us/en/products/pro 

cessors/pentium.html 

 

[13] Intel Xeon phi Programming Environment, 

https://software.intel.com/en-us/articles/intel-xeon-phi-

programming-environment 

 

[14] Kowalik, Janusz, Piotr Arłukowicz, and Erika 

Parsons. "Speeding Up Computers." arXiv preprint 

arXiv:1603.05487 (2016). 

 

[15] Hybrid Computing – Coprocessors/Accelerators 

Power-Aware Computing – Performance of Applications 

Kernels https://www.cdac.in/index.aspx?id=pdf_xeon-

phi-prog-overview-hypack 

 

[16] CUDA vs. Phi: Phi Programming for CUDA 

Developers, http://www.drdobbs.com/parallel/cuda-vs-

phi-phi-programming-for-cuda- dev/240144545 

 

[17] James Jeffers James Reinders, "Introduction" in 

Intel Xeon Phi Coprocessor High Performance 

Programming,2013 

 

[18] A comparison of heterogeneous and Manycore 

Programming Model, 

https://www.hpcwire.com/2015/03/0/a-comparison-of-

heterogeneous-and-manycoreprogramming-models/ 

 

[19] NVIDIA Tesla GPU Architecture AND CUDA 

Environment,https://code.msdn.microsoft.com/windows 

desktop/NVIDIA-GPU-Architecture-45c11e6d 

 

[20] Is OpenACC The Best Thing To Happen To 

OpenMP?,https://www.nextplatform.com/2015/11/30/is -

openacc-the-best-thing-to-happen-to-openmp/ 

 

[21] Wilt, Nicholas. The cuda handbook: A 

comprehensive guide to gpu programming. Pearson 

Education, 2013 

http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-computing/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-computing/
https://www.intel.com/content/www/us/en/products/pro%20cessors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/products/pro%20cessors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/products/pro%20cessors/pentium.html
https://www.intel.com/content/www/us/en/products/pro%20cessors/pentium.html
https://software.intel.com/en-us/articles/intel-xeon-phi-programming-environment
https://software.intel.com/en-us/articles/intel-xeon-phi-programming-environment
https://www.hpcwire.com/2015/03/0/a-comparison-of-heterogeneous-and-manycoreprogramming-models/
https://www.hpcwire.com/2015/03/0/a-comparison-of-heterogeneous-and-manycoreprogramming-models/

