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ABSTRACT
Traditional parallel algorithms for mining frequent itemsets aim to balance load by equally partitioning data among a group of 
computing nodes. We start this study by discovering a serious performance problem of the existing parallel Frequent Itemset Mining 
algorithms. Given a large dataset, data partitioning strategies in the existing solutions suffer high communication and mining overhead 
induced by redundant transactions transmitted among computing nodes. We address this problem by developing a data partitioning 
approach called FiDoop-DP using the MapReduce programming model. The overarching goal of FiDoop-DP is to boost the 
performance of parallel Frequent Itemset Mining on Hadoop clusters. At the heart of FiDoop-DP is the Voronoi diagram-based data 
partitioning technique, which exploits correlations among transactions. Incorporating the similarity metric and the Locality-Sensitive 
Hashing technique, FiDoop-DP places highly similar transactions into a data partition to improve locality without creating an 
excessive number of redundant transactions. We implement FiDoop-DP on a 24-node Hadoop cluster, driven by a wide range of 
datasets created by IBM Quest Market-Basket Synthetic Data Generator. Experimental results reveal that FiDoop-DP is conducive to 
reducing network and computing loads by the virtue of eliminating redundant transactions on Hadoop nodes. FiDoop-DP significantly 
improves the performance of the existing parallel frequent-pattern scheme by up to 31% with an average of 18%.

Keywords : Frequent Itemset Mining, Parallel Data Mining, Data Partitioning, MapReduce Programming Model, 
Hadoop Cluster

I. INTRODUCTION 

Traditional parallel Frequent Itemset Mining 
techniques (a.k.a., FIM) are focused on load balancing; 
data are equally partitioned and distributed among 
computing nodes of a cluster. More often than not, the 
lack of analysis of correlation among data leads to poor 
data locality. The absence of data collocation increases the 
data shuffling costs and the network overhead, reducing 
the effectiveness of data partitioning. In this study, we 
show that redundant transaction transmission and itemset-
mining tasks are likely to be created by inappropriate data 
partitioning decisions. As a result, data partitioning in 
FIM affects not only network traffic but also computing 
loads. Our evidence shows that data partitioning 
algorithms should pay attention to network and computing 
loads in addition to the issue of load balancing. We 
propose a parallel FIM approach called FiDoop-DP using 
the MapReduce programming model. The key idea of 
FiDoop-DP is to group highly relevant transactions into a 
data partition; thus, the number of redundant transactions 
is significantly slashed. Importantly, we show how to 
partition and distribute a large dataset across data nodes of 
a Hadoop cluster to reduce network and computing loads 
induced by making redundant transactions on remote 
nodes.

The MapReduce Programming Model. 
MapReduce - a highly scalable and fault-tolerant parallel 
programming model - facilitates a framework for 

processing large scale datasets by exploiting parallelisms 
among data nodes of a cluster. In the realm of big data 
processing, mapreduce has been adopted to develop 
parallel data mining algorithms, including Frequent 
Itemset Mining (e.g., Aprioribased, FP-Growth-
based , as well as other classic association rule mining). 
Hadoop is an open source implementation of the 
MapReduce programming model In this paper[3], we 
show that Hadoop cluster is an ideal computing 
framework for mining frequent itemsets over massive and 
distributed datasets.

Data Partitioning in Hadoop Clusters. -In modern 
distributed systems, execution parallelism is controlled 
through data partitioning which in turn provides the 
means necessary to achieve high efficiency and good 
scalability of distributed execution in a large-scale cluster. 
Thus, efficient performance of data-parallel computing 
heavily depends on the effectiveness of data partitioning. 
Existing data partitioning solutions of FIM built in 
Hadoop aim at balancing computation load by equally 
distributing data among nodes. However, the correlation 
between the data is often ignored which will lead to poor 
data locality, and the data shuffling costs and the network 
overhead will increase. We develop FiDoop-DP, a parallel 
FIM technique, in which a large dataset is partitioned 
across a Hadoop cluster’s data nodes in a way to improve 
data locality.

II. LITERATURE SURVEY 

Fidoop:parallel mining of frequent items using mpreduce
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Existing parallel mining algorithms for frequent 
itemsets is not efficient.To solve the problem, we design a 
parallel frequent itemsets mining algorithm called FiDoop 
using the MapReduce programming model. To achieve 
compressed storage and avoid building conditional pattern 
bases, FiDoop incorporates the frequent items ultrametric 
tree, rather than conventional FP trees. In FiDoop, three 
MapReduce jobs are implemented to complete the mining 
task.In the crucial third MapReduce job, the mappers 
independently decompose itemsets, the reducers perform 
combination operations by constructing small ultrametric 
trees, and the actual mining of these trees separately. 

Frequent Set Mining For Streaming Mixed And Large Data 
[2]

Frequent set mining is a well researched problem 
due to its application in many areas of data mining such as 
clustering, classification and association rule mining. Most 
of the existing work focuses on categorical and batch data 
and do not scale well for large datasets. In this work, 
introduce a discretization methodology to find meaningful 
bin boundaries when item sets contain at least one 
continuous attribute. An update strategy to keep the 
frequent items relevant in the event of concept drift, and a 
parallel algorithm to find these frequent items. Our 
approach identifies local bins per itemset, as a global 
discretization may not identify the most meaningful bins. 

Efficient Apriori Based Algorithms For Privacy Preserving 
Frequent Itemset Mining [3]

Frequent Itemset Mining as one of the principal 
routine of data analysis and a basic tool of large scale 
information aggregation also bears a serous interest in 
Privacy Preserving Data Mining. In this paper Apriori based 
distributed, privacy preserving Frequent Itemset Mining 
algorithms are considered. 
Our secure algorithms are designed to fit in the Secure 
Multiparty Computation model of privacy preserving 
computation.

III. EXISTING SYSTEM

Existing parallel Frequent Itemset Mining 
algorithms given a large dataset, data partitioning strategies 
in this the solutions suffer high communication. And 
mining overhead induced by redundant transactions 
transmitted among computing nodes. In this paper [2],the 
partitioning techniques in this MapReduce platforms are in 
their infancy, leading to serious performance problems.

As a result, data partitioning in FIM affects not 
only network traffic but also computing loads. Our evidence 
shows that data partitioning algorithms should pay attention 
to network and computing loads in addition to the issue of 
load balancing. Existing data partitioning solutions of FIM 
built in Hadoop aim at balancing computation load by 
equally distributing data among nodes. However, the 
correlation between the data is often ignored which will 
lead to poor data locality, and the data shuffling costs and 
the network overhead will increase.

Disadvantages
•  Parallel algorithms lack a mechanism that enables 
•  Automatic parallelization, 
•  Load balancing, 
•  Data distribution, and 
•  Fault tolerance on large computing clusters.

IV. PROPOSED SYSTEM

FiDoop-DP using the MapReduce programming 
model is proposed. The goal of FiDoop-DP is to boost the 
performance of parallel Frequent Itemset Mining on 
Hadoop clusters. It is the Voronoi diagram-based data 
partitioning technique, which exploits correlations among 
transactions. It places highly similar transactions into a 
data partition to improve locality without creating an 
excessive number of redundant transactions. the proposed 
FiDoop- DP, We generate synthetic datasets using the 
IBM Quest Market-Basket Synthetic Data Generator , 
which can be flexibly configured to create a wide range of 
data sets to meet the needs of various test requirements.

Application-Aware Data Partitioning
Various efficient data partitioning strategies have 

been proposed to improve the performance of parallel 
computing systems. For example, Kirsten et al. developed 
two general partitioning strategies for generating entity 
match tasks to avoid memory bottlenecks and load 
imbalances Taking into account the characteristics of 
input data, Aridhi et al. proposed a novel density-based 
data partitioning technique for approximate large-scale 
frequent subgraph mining to balance computational load 
among a collection of machines. Kotoulas et al. built a 
data distribution mechanism based on clustering in elastic 
regions

Data Characteristic Dimensionality:  
FiDoop-DP to efficiently reduce the number of 

redundant transactions. In contrast, a dataset with high 
dimensionality has a long average transaction length; 
therefore, data partitions produced by FiDoop-DP have no 
distinct discrepancy. Redundant transactions are likely to 
be formed for partitions that lack distinct characteristics. 
Consequently, the benefit offered by FiDoop-DP for high 
dimensional datasets becomes insignificant.

Data Correlation: 
FiDoop-DP judiciously groups items with high 

correlation into one group and clustering similar 
transactions together. In this way, the number of 
redundant transactions kept on multiple nodes is 
substantially reduced. Consequently, FiDoop-DP is 
conducive to cutting back both data transmission traffic 
and computing load.
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Figure 1 : System Architecture 

In Figure 1 : Step 1: Parallel Counting: The first 
MapReduce job counts the support values of all items 
residing in the database to discover all frequent items or 
frequent 1-itemsets in parallel. It is worth noting that this 
step simply scans the database once. Step 2. Sorting 
frequent 1-itemsets to FList: The second step sorts these 
frequent 1-itemsets in a decreasing order of frequency; the 
sorted frequent 1-itemsets are cached in a list named 
FList. Step 2 is a non-MapReduce process due to its 
simplicity as well as the centralized control. Step 3. 
Parallel FP-Growth: This is a core step of Pfp, where the 
map stage and reduce stage perform the following two 
important functions. • Mapper - Grouping items and 
generating group-dependent transactions. First, the 
Mappers divide all the items in FList into Q groups. The 
list of groups is referred to as group list or GList, where 
each group is assigned a unique group ID (i.e., Gid). 
Then, the transactions are partitioned into multiple groups 
according to GLists. That is, each mapper outputs one or 
more key-value pairs, where a keys is a group ID and its 
corresponding value is a generated group-dependent 
transaction. • Reducer - FP-Growth on group-dependent 
partitions. lo- cal FPGrowth is conducted to generate local 
frequent itemsets. Each reducer conducts local FPGrowth 
by processing one or more group-dependent partition one 
by one, and discovered patterns are output in the final. 
Step 4. Aggregating: The last MapReduce job produces 
final results by aggregating the output generated in Step 3.
Advantages

•Automatic parallelization, 
•Load balancing, 
•Data distribution, and 
•Fault tolerance on large computing clusters

Nearest Neighbor Classifier: K-Nearest Neighbor Classifier 
(Knn) And Its Modifications

It is a majority of class theorem for the newly 
came unclassified document where k denotes the number of 
already classified documents and k is not the multiple of 
number of classes. 
(i)   Standard KNN- k is fixed. Weight factor is not 
considered. 

(ii) Time consuming. k-variable KNN- Improved k-variable 
KNN, Basic kvariable KNN, Weighting KNN are good if 
they are combined into one 'Flexible KNN' algorithm which 
switches the algorithms according to k value available but 
again it is somewhat complex also not feasible real time 
sentiment analysis

V. CONCLUSION AND FUTURE ENHANCEMENTS

To mitigate high communication and reduce 
computing cost in MapReduce-based FIM algorithms, we 
developed FiDoop-DP, which exploits correlation among 
transactions to partition a large dataset across data nodes 
in a Hadoop cluster. FiDoop-DP is able to (1) partition 
transactions with high similarity together and (2) group 
highly correlated frequent items into a list. One of the 
salient features of FiDoop-DP lies in its capability of 
lowering network traffic and computing load through 
reducing the number of redundant transactions, which are 
transmitted among Hadoop nodes. FiDoop-DP applies the 
Voronoi diagrambased data partitioning technique to 
accomplish data partition, in which LSH is incorporated to 
offer an analysis of correlation among transactions. At the 
heart of FiDoop- DP is the second MapReduce job, which 
(1) partitions a large database to form a complete dataset 
for item groups and (2) conducts FP-Growth 
processing in parallel on local partitions to generate all 
frequent patterns. Our experimental results reveal that 
FiDoop-DP significantly improves the FIM performance 
of the existing Pfp solution by up to 31% with an average 
of 18%. We introduced in this study a similarity metric to 
facilitate data-aware partitioning. As a future research 
direction, we will apply this metric to investigate 
advanced loadbalancing strategies on a heterogeneous 
Hadoop cluster.
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