
International Innovative Research Journal of Engineering and Technology

ISSN NO: 2456-1983

International Conference on Emerging Innovation in Engineering and Technology
ICEIET-2017

Fidoop-Dp: Data Partitioning In Frequent Itemset
Mining On Hadoop Clust

1DR.P.SHUNMUGAPRIYA 2R.MARAGATHAM
1Dean of school of computing, Christ Institute of Technology, Puducherry.

2PG Scholar, Department of CSE, Christ Institute of Technology, Puducherry.
pshunmugapriya@gmail.com roja.maragatham@gmail.com

ABSTRACT
Traditional parallel algorithms for mining frequent itemsets aim to balance load by equally partitioning data among a group of
computing nodes. We start this study by discovering a serious performance problem of the existing parallel Frequent Itemset Mining
algorithms. Given a large dataset, data partitioning strategies in the existing solutions suffer high communication and mining overhead
induced by redundant transactions transmitted among computing nodes. We address this problem by developing a data partitioning
approach called FiDoop-DP using the MapReduce programming model. The overarching goal of FiDoop-DP is to boost the
performance of parallel Frequent Itemset Mining on Hadoop clusters. At the heart of FiDoop-DP is the Voronoi diagram-based data
partitioning technique, which exploits correlations among transactions. Incorporating the similarity metric and the Locality-Sensitive
Hashing technique, FiDoop-DP places highly similar transactions into a data partition to improve locality without creating an
excessive number of redundant transactions. We implement FiDoop-DP on a 24-node Hadoop cluster, driven by a wide range of
datasets created by IBM Quest Market-Basket Synthetic Data Generator. Experimental results reveal that FiDoop-DP is conducive to
reducing network and computing loads by the virtue of eliminating redundant transactions on Hadoop nodes. FiDoop-DP significantly
improves the performance of the existing parallel frequent-pattern scheme by up to 31% with an average of 18%.

Keywords : Frequent Itemset Mining, Parallel Data Mining, Data Partitioning, MapReduce Programming Model,
Hadoop Cluster

I. INTRODUCTION

Traditional parallel Frequent Itemset Mining
techniques (a.k.a., FIM) are focused on load balancing;
data are equally partitioned and distributed among
computing nodes of a cluster. More often than not, the
lack of analysis of correlation among data leads to poor
data locality. The absence of data collocation increases the
data shuffling costs and the network overhead, reducing
the effectiveness of data partitioning. In this study, we
show that redundant transaction transmission and itemset-
mining tasks are likely to be created by inappropriate data
partitioning decisions. As a result, data partitioning in
FIM affects not only network traffic but also computing
loads. Our evidence shows that data partitioning
algorithms should pay attention to network and computing
loads in addition to the issue of load balancing. We
propose a parallel FIM approach called FiDoop-DP using
the MapReduce programming model. The key idea of
FiDoop-DP is to group highly relevant transactions into a
data partition; thus, the number of redundant transactions
is significantly slashed. Importantly, we show how to
partition and distribute a large dataset across data nodes of
a Hadoop cluster to reduce network and computing loads
induced by making redundant transactions on remote
nodes.

The MapReduce Programming Model.
MapReduce - a highly scalable and fault-tolerant parallel
programming model - facilitates a framework for

processing large scale datasets by exploiting parallelisms
among data nodes of a cluster. In the realm of big data
processing, mapreduce has been adopted to develop
parallel data mining algorithms, including Frequent
Itemset Mining (e.g., Aprioribased, FP-Growth-
based , as well as other classic association rule mining).
Hadoop is an open source implementation of the
MapReduce programming model In this paper[3], we
show that Hadoop cluster is an ideal computing
framework for mining frequent itemsets over massive and
distributed datasets.

Data Partitioning in Hadoop Clusters. -In modern
distributed systems, execution parallelism is controlled
through data partitioning which in turn provides the
means necessary to achieve high efficiency and good
scalability of distributed execution in a large-scale cluster.
Thus, efficient performance of data-parallel computing
heavily depends on the effectiveness of data partitioning.
Existing data partitioning solutions of FIM built in
Hadoop aim at balancing computation load by equally
distributing data among nodes. However, the correlation
between the data is often ignored which will lead to poor
data locality, and the data shuffling costs and the network
overhead will increase. We develop FiDoop-DP, a parallel
FIM technique, in which a large dataset is partitioned
across a Hadoop cluster’s data nodes in a way to improve
data locality.

II. LITERATURE SURVEY

Fidoop:parallel mining of frequent items using mpreduce

International Innovative Research Journal of Engineering and Technology

ISSN NO: 2456-1983

Existing parallel mining algorithms for frequent
itemsets is not efficient.To solve the problem, we design a
parallel frequent itemsets mining algorithm called FiDoop
using the MapReduce programming model. To achieve
compressed storage and avoid building conditional pattern
bases, FiDoop incorporates the frequent items ultrametric
tree, rather than conventional FP trees. In FiDoop, three
MapReduce jobs are implemented to complete the mining
task.In the crucial third MapReduce job, the mappers
independently decompose itemsets, the reducers perform
combination operations by constructing small ultrametric
trees, and the actual mining of these trees separately.

Frequent Set Mining For Streaming Mixed And Large Data
[2]

Frequent set mining is a well researched problem
due to its application in many areas of data mining such as
clustering, classification and association rule mining. Most
of the existing work focuses on categorical and batch data
and do not scale well for large datasets. In this work,
introduce a discretization methodology to find meaningful
bin boundaries when item sets contain at least one
continuous attribute. An update strategy to keep the
frequent items relevant in the event of concept drift, and a
parallel algorithm to find these frequent items. Our
approach identifies local bins per itemset, as a global
discretization may not identify the most meaningful bins.

Efficient Apriori Based Algorithms For Privacy Preserving
Frequent Itemset Mining [3]

Frequent Itemset Mining as one of the principal
routine of data analysis and a basic tool of large scale
information aggregation also bears a serous interest in
Privacy Preserving Data Mining. In this paper Apriori based
distributed, privacy preserving Frequent Itemset Mining
algorithms are considered.
Our secure algorithms are designed to fit in the Secure
Multiparty Computation model of privacy preserving
computation.

III. EXISTING SYSTEM

Existing parallel Frequent Itemset Mining
algorithms given a large dataset, data partitioning strategies
in this the solutions suffer high communication. And
mining overhead induced by redundant transactions
transmitted among computing nodes. In this paper [2],the
partitioning techniques in this MapReduce platforms are in
their infancy, leading to serious performance problems.

As a result, data partitioning in FIM affects not
only network traffic but also computing loads. Our evidence
shows that data partitioning algorithms should pay attention
to network and computing loads in addition to the issue of
load balancing. Existing data partitioning solutions of FIM
built in Hadoop aim at balancing computation load by
equally distributing data among nodes. However, the
correlation between the data is often ignored which will
lead to poor data locality, and the data shuffling costs and
the network overhead will increase.

Disadvantages
• Parallel algorithms lack a mechanism that enables
• Automatic parallelization,
• Load balancing,
• Data distribution, and
• Fault tolerance on large computing clusters.

IV. PROPOSED SYSTEM

FiDoop-DP using the MapReduce programming
model is proposed. The goal of FiDoop-DP is to boost the
performance of parallel Frequent Itemset Mining on
Hadoop clusters. It is the Voronoi diagram-based data
partitioning technique, which exploits correlations among
transactions. It places highly similar transactions into a
data partition to improve locality without creating an
excessive number of redundant transactions. the proposed
FiDoop- DP, We generate synthetic datasets using the
IBM Quest Market-Basket Synthetic Data Generator ,
which can be flexibly configured to create a wide range of
data sets to meet the needs of various test requirements.

Application-Aware Data Partitioning
Various efficient data partitioning strategies have

been proposed to improve the performance of parallel
computing systems. For example, Kirsten et al. developed
two general partitioning strategies for generating entity
match tasks to avoid memory bottlenecks and load
imbalances Taking into account the characteristics of
input data, Aridhi et al. proposed a novel density-based
data partitioning technique for approximate large-scale
frequent subgraph mining to balance computational load
among a collection of machines. Kotoulas et al. built a
data distribution mechanism based on clustering in elastic
regions

Data Characteristic Dimensionality:
FiDoop-DP to efficiently reduce the number of

redundant transactions. In contrast, a dataset with high
dimensionality has a long average transaction length;
therefore, data partitions produced by FiDoop-DP have no
distinct discrepancy. Redundant transactions are likely to
be formed for partitions that lack distinct characteristics.
Consequently, the benefit offered by FiDoop-DP for high
dimensional datasets becomes insignificant.

Data Correlation:
FiDoop-DP judiciously groups items with high

correlation into one group and clustering similar
transactions together. In this way, the number of
redundant transactions kept on multiple nodes is
substantially reduced. Consequently, FiDoop-DP is
conducive to cutting back both data transmission traffic
and computing load.

International Innovative Research Journal of Engineering and Technology

ISSN NO: 2456-1983

Figure 1 : System Architecture

In Figure 1 : Step 1: Parallel Counting: The first
MapReduce job counts the support values of all items
residing in the database to discover all frequent items or
frequent 1-itemsets in parallel. It is worth noting that this
step simply scans the database once. Step 2. Sorting
frequent 1-itemsets to FList: The second step sorts these
frequent 1-itemsets in a decreasing order of frequency; the
sorted frequent 1-itemsets are cached in a list named
FList. Step 2 is a non-MapReduce process due to its
simplicity as well as the centralized control. Step 3.
Parallel FP-Growth: This is a core step of Pfp, where the
map stage and reduce stage perform the following two
important functions. • Mapper - Grouping items and
generating group-dependent transactions. First, the
Mappers divide all the items in FList into Q groups. The
list of groups is referred to as group list or GList, where
each group is assigned a unique group ID (i.e., Gid).
Then, the transactions are partitioned into multiple groups
according to GLists. That is, each mapper outputs one or
more key-value pairs, where a keys is a group ID and its
corresponding value is a generated group-dependent
transaction. • Reducer - FP-Growth on group-dependent
partitions. lo- cal FPGrowth is conducted to generate local
frequent itemsets. Each reducer conducts local FPGrowth
by processing one or more group-dependent partition one
by one, and discovered patterns are output in the final.
Step 4. Aggregating: The last MapReduce job produces
final results by aggregating the output generated in Step 3.
Advantages

•Automatic parallelization,
•Load balancing,
•Data distribution, and
•Fault tolerance on large computing clusters

Nearest Neighbor Classifier: K-Nearest Neighbor Classifier
(Knn) And Its Modifications

It is a majority of class theorem for the newly
came unclassified document where k denotes the number of
already classified documents and k is not the multiple of
number of classes.
(i) Standard KNN- k is fixed. Weight factor is not
considered.

(ii) Time consuming. k-variable KNN- Improved k-variable
KNN, Basic kvariable KNN, Weighting KNN are good if
they are combined into one 'Flexible KNN' algorithm which
switches the algorithms according to k value available but
again it is somewhat complex also not feasible real time
sentiment analysis

V. CONCLUSION AND FUTURE ENHANCEMENTS

To mitigate high communication and reduce
computing cost in MapReduce-based FIM algorithms, we
developed FiDoop-DP, which exploits correlation among
transactions to partition a large dataset across data nodes
in a Hadoop cluster. FiDoop-DP is able to (1) partition
transactions with high similarity together and (2) group
highly correlated frequent items into a list. One of the
salient features of FiDoop-DP lies in its capability of
lowering network traffic and computing load through
reducing the number of redundant transactions, which are
transmitted among Hadoop nodes. FiDoop-DP applies the
Voronoi diagrambased data partitioning technique to
accomplish data partition, in which LSH is incorporated to
offer an analysis of correlation among transactions. At the
heart of FiDoop- DP is the second MapReduce job, which
(1) partitions a large database to form a complete dataset
for item groups and (2) conducts FP-Growth
processing in parallel on local partitions to generate all
frequent patterns. Our experimental results reveal that
FiDoop-DP significantly improves the FIM performance
of the existing Pfp solution by up to 31% with an average
of 18%. We introduced in this study a similarity metric to
facilitate data-aware partitioning. As a future research
direction, we will apply this metric to investigate
advanced loadbalancing strategies on a heterogeneous
Hadoop cluster.

References
[1] M. J. Zaki, “Parallel and distributed association
mining: A survey,” Concurrency, IEEE, vol. 7, no. 4, pp.
14–25, 1999.

[2] I. Pramudiono and M. Kitsuregawa, “Fp-tax: Tree
structure based generalized association rule mining,” in
Proceedings of the 9th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery.
ACM, 2004, pp. 60–63.

[3] J. Dean and S. Ghemawat, “Mapreduce: simplified
data processing on large clusters,” Communications of the
ACM, vol. 51, no. 1, pp. 107–113, 2008.

[4] S. Sakr, A. Liu, and A. G. Fayoumi, “The family of
mapreduce and large-scale data processing systems,”
ACM Computing Surveys (CSUR), vol. 46, no. 1, p. 11,
2013.

[5] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based
frequent itemset mining algorithms on mapreduce,” in
Proceedings of the 6th International Conference on
Ubiquitous Information Management and

International Innovative Research Journal of Engineering and Technology

ISSN NO: 2456-1983

Communication, ser. ICUIMC ’12. New York, NY, USA:
ACM, 2012, pp. 76:1–76:8.

[6] X. Lin, “Mr-apriori: Association rules algorithm based
on mapreduce,” in Software Engineering and Service
Science (ICSESS), 2014 5th IEEE International
Conference on. IEEE, 2014, pp. 141–144.

[9] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S.
Feng, “Balanced parallel fp-growth with mapreduce,” in

Information Computing and Telecommunications (YC-
ICT), 2010 IEEE Youth Conference on. IEEE, 2010, pp.
243–246.

[10] S. Hong, Z. Huaxuan, C. Shiping, and H. Chunyan,
“The study of improved fp-growth algorithm in
mapreduce,” in 1st International Workshop on Cloud
Computing and Information Security. Atlantis Press,
2013.

[7] M. Riondato, J. A. DeBrabant, R. Fonseca, and E.
Upfal, “Parma: a parallel randomized algorithm for
approximate association rules mining in mapreduce,” in
Proceedings of the 21st ACM international conference on
Information and knowledge management. ACM, 2012,
pp. 85–94.
[8] C. Lam, Hadoop in action. Manning Publications Co.,

2010.

[11] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y.
Chang, “Pfp: parallel fp-growth for query
recommendation,” in Proceedings of the 2008 ACM
conference on Recommender systems. ACM, 2008, pp.
107–114.

