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I. ABSTRACT 
 
A large numbers of focused graph processing systems have been developed to cope with the increasing 
stipulate on graph analytics.  Most  of  them  require  users  to  systematize  a  new  framework  in  the  
cluster  for  graph  processing  and  toggle  to  other  systems  to  accomplish  non-graph  algorithms.  This 
increases the involvedness of cluster management and results in unnecessary data transfer and redundancy.  
In this  paper, we  propose  our  graph  processing  engine,  named  as epiCG,  which  is  built  on  top  of  
epiC, an  flexibility data  processing  system.  The core  of  epiCG  is  a  new  unit  called  GraphUnit,  which 
is able to not only perform iterative  graph processing streamlined, but  also  collaborate with  other  types  
of units to accomplish any complex/multi-stage  data  analytics. The epiCG  supports  both  edge-cut  and  
vertex-cut partitioning methods, and for the latter  method,  we  propose  a  novel  light-weight greedy 
strategy that enables all the GraphUnits to generate vertex-cut partitioning  in  parallel.  moreover, disparate  
existing graph processing systems, malfunction revitalization in epiCG is absolutely automatic.  We compare 
epiCG with several graph processing systems via extensive experiments with real-life dataset and 
applications. The results show that epiCG possesses high orderliness and scalability, and performs 
tremendously well in large dataset settings, Proclaim its correctness for large-scale graph processing. 

Keywords: EpiCG, epic, Vertex-cut, partitioning, Graph Unit, graph processing systems 

II. INTRODUCTION 
 
The increasing insists of graph analytics is the 
foreseeable effect of the growing large scale and 
magnitude of graph data. Big graph examples including 
social network graphs, email and illustration message 
graphs typically involve billions of vertices and edges. 
For example, Facebook has over 1.5 billion monthly 
active users at present. In recent years, a large number of 
particular distributed graph processing systems such as 
Pregel [1], Power-  Graph [2],  Giraph  [3]  and  GPS  [4]  
have been  proposed  to  handle complex graph analytics 
tasks. These specialized systems gain their popularities 
for two reasons. First, they follow the vertex centric 
programming model introduced by Pregel that allows 
users to articulate various graph algorithms in a natural 
way.  Second, most graph processing systems are 
designed for iterative computation and are in-memory 
processing systems [5]  since they hold the graph data in 
memory during iterations. Therefore, such systems 
outperform the general purpose distributed systems such 
as MapReduce [6,7] and its open-source 
implementation Hadoop [8] that typically flush data to 
the distributed file system at the end of each iteration 
and reload data into memory in the beginning of the 
next iteration. 
 
The epiC system 
epiC [12] was proposed to address data variety challenge 

in Big Data. It  adopts  the  Actor-like   programming  
model  and  provides  a simple yet competent unit 
crossing point to  support  various  computation models. 
In epiC, users can express different computation logics  
by central different units. Each processing unit performs 
computation in parallel with other units and 
communicates with  other  units through message 
passing. Messages, however, cannot be sent directly 
between two units; each message is sent to the master 
network (which is responsible for routing messages) and 
then forwarded to the corresponding units. A unit 
becomes active if it receives messages from the master 
network. After parsing the message, the unit will load 
data from the underlying storage and apply the user 
defined computation logic to process the data 
accordingly. When the unit completes its  computation,  
it  flushes  the  output  to the storage and becomes 
inactive until it receives a new message.epiC adopts 
the master-worker architecture. There is only a single 
master node in epiC (this is different from the nodes  in  
the  master network which are mainly responsible for  
message  routing). The master node runs a master 
daemon which monitors the healthy statues of the slaves 
and commands workers to execute tasks. Each worker 
node establishes a worker tracker daemon. The worker 
tracker manages a pool of worker processes which 
accept a n d  execute assigned unit tasks.  In epiC, we 
assign one unit task to one worker process. 
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Distributed graph processing 
 

The key idea of distributed graph processing is a 
vertex-centric programming model proposed by 
Pregel [1], which abstracts graph algorithms as the 
computation for every vertex and message ex- change 
between different vertices. Typically, the execution of 
a graph job consists of three phases: data loading, 
iterative computation and the output. In the data 
loading phase, an input graph is loaded from the 
underlying storage system and distributed among the 
compute nodes. During iterative computation, each 
compute node sequentially scans its received vertices 
and executes a user- defined compute function for 
each of them. Every vertex can update its value and 
send messages to other vertices during the 
computation. Pregel-like systems follow Bulk 
Synchronous Parallel (BSP) model [13] and all the 
compute nodes will proceed to the next iteration 
synchronously, while some systems such as Power- 
Graph [2] perform computation in      

 

     

 
  

Fig. 1.  Two  graph  partitioning  
methods. 

an asynchronous  manner.  Finally, in the output phase,  
compute  nodes  flush  the  results  (e.g.,  the computed 
values of the vertices) to the storage system. 
Essentially, distributed graph processing distributes 
graph data and parallelizes computation tasks among a 
cluster of compute  nodes, thus  accelerating  the  
processing significantly. 
 

III. RELATED WORK 
 
Distributed graph processing. There have been a 
large number of systems proposed for graph 
processing. Pregel [1] follows the Bulk Synchronous 
Parallel (BSP) model and introduces a vertex- centric 
programming model that allows users to express 
graph algorithms in a natural way. Later on, various 
implementation of Pregel have been developed.  
Giraph [3]  treats the computation as a map-only job 
in MapReduce framework [6]  where the in- put and 
output data are stored in HDFS. Bu et al. [18] 

proposed Pregelix, which runs iterative dataflows 
dealing with computations, to conduct graph analysis. 
Yan et al. implemented Pregel+,      a C/C++ graph 
system eliminating serialization cost introduced by 
Java. Graphlab introduces a shared memory 
abstraction which allows the adjacent vertices and 
edges to be accessed by the local vertex and hence 
enables users to concentrate on the sequential 
computation by hiding the details of data movement 
between vertices. 
Since synchronization is indispensable in BSP model, 
the stragglers, i.e., the workers who run much slower 
than others, can significantly slow down the 
synchronization process. Hence, Sal- ihoglu et al. [4] 
introduced GPS which follows the same storage 
design with Giraph but provides two optimizations. 
The first one  is to maintain dynamic partitions among 

workers, and the second one is to divide the adjacency 
list of high-degree vertices into different workers to 
balance the loads of workers. Graph lab and 
PowerGraph [2] employ Gather-Apply-Scatter (GAS) 
model and can run in synchronous or asynchronous 
mode. Asynchronous mode migrates the stragglers by 
eliminating global synchronization cost. However, this 
increases system complexity due to the concurrency 
control for serializability. 
Recent efforts focused on leveraging existing platforms 
for graph processing. Simmen et al. [24] introduced 
Aster 6 which provides SQL-like interface for graph 
analytics. Similarly, Fan et al. [17]  proposed Grail, a 
syntactic layer   for   querying   graph   on   top of 
RDBMS, which translates graph queries into SQL 
queries. GraphX [9] is built on Spark [10], which 
implements Pregel by leveraging general dataflow 
operators in Spark. To align the performance with the 
specialized graph processing systems, various 
optimizations for dataflow operators have been 
proposed.  This   is different from our work as we 
develop epiCG as one unit in epiC for graph processing 
and reply on epiC to leverage different units    for 
complex analytics query processing. As an independent 
unit, epiCG allows us to implement all the optimizations 
proposed for the specialized graph processing systems. 
 
Graph partitioning. Graph partitioning is critical to 
distributed graph processing. While various edge-cut 
partitioning methods [14] have been proposed to 
balance the computation workload among multiple 
compute nodes and try to minimize the network 
communication cost, less attention has been paid to 
vertex-cut partitioning. PowerGraph [2] proposed a 
greedy strategy to generate vertex-cut partitioning, 
which require to use a single compute node to load the 
entire graph into memory, thus restricting the size of 
graph that can be handled. SBV-cut  and JA-BE- JA-
VC  are two recent works for distributed vertex-cut 
partitioning. However, both of them requires iterative 
computation over the entire graph, which does not 
allow multiple compute nodes to generate a vertex-cut 
partitioning in parallel. 
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IV. PROPOSED SYSTEM ARCHITECTURE 

 

 
Figure 1: Proposed System Architecture  

 
The architecture of epiCG. epiCG deploys the 

distributed file system (DFS) as its underlying storage. 

Typically, DFS contains the initial graph data to be 
processed  by  epiCG  and  the  final results produced by 

epiCG. epiCG follows the single master- multiple worker 
architecture of epiC. The master runs a master daemon 
which maintains the healthy statuses of  all  the  workers  
and instructs workers to execute unit programs. We 
divide workers into three categories to execute 
masterGraphUnit,  slaveGraphUnit  and Zookeeper, 
respectively. The masterGraphUnit coordinates su- 
persteps among all the workers who execute 
slaveGraphUnit and the Zookeeper maintains 
information shared among these workers, e.g., which 
worker has finished the execution of the current su- 
perstep, how many workers have dumped a checkpoint. 
Typically, given a set of workers, we choose one worker 
to run the master- GraphUnit program. The 
functionalities of the GraphUnits are listed as 
follows.MasterGraphUnit. the  
MasterGraphUnit program performs two tasks: 

1. Partition and distribute the input graph among the 
workers that run SlaveGraphUnit program. 
2. Coordinate the SlaveGraphUnit workers to perform 
super steps synchronously. 

To perform these tasks correctly, MasterGraphUnit 
maintains several important objects. 

 MasterPartitioner:  generate the vertex-to-
partition mapping list several important data structures 
managed by    each for the input graph.  

 MasterClient: notify workers of the newly 
computed global aggregated values. 

 MasterAggregator: retrieve local aggregated 
values from the workers and generate the global 
aggregated ones. 
 

SlaveGraphUnit. The SlaveGraphUnit program is 
responsible for the following four tasks. 

 WorkerServer: Retrieves and              
manages the graph data that is assigned to the worker. 

 WorkerPartitioner: Maintains partition 
information for the vertices residing in the worker. 

 WorkerClient: Forwards messages to the 
zookeeper and other workers. 

 WorkerAggregator: Computes aggregated 
values and writes to the zookeeper. 
SlaveGraphUnit maintains four important objects: 
  
1. Load its assigned graph data and flush computation 
results from/to the storage system. 
2. Loop over vertices and execute compute () 
function. 
3. Forward messages generated during the computation. 
4. Generate aggregated values and write to the 
zookeeper. 
 
Once a  graph  job  is  submitted  to  epiCG,  all  the  
workers  will  be activated immediately. At the 
beginning of the execution, epiCG establishes pair wise 
connections between GraphUnits. This is different from 
epiC where units cannot communicate with each other 
directly, but rely on the message service provided by 
the master network. As most graph applications such as 
PageRank and shortest path computation involve a 
large number of messages, setting up direct 
connections between units allows them to  
communicate with each other more streamlined and 
prevents the master network being  the bottleneck 
 
 
 
 
. 

 ALGORITHM 1:GENERATE 
VERTEX CUT 

INPUT:  v, a vertex 

                 φp, PartitionOwnerList 

                 n, the number of Partitions 

OUTPUT:M:list of(copy,partition)pairs 

1  M← θ; 

2 EV←v.GetEdges(); 

3 if ǀEVǀ≤θ then 

4 M←{(v,GetPartition(v.vid))}; 

5 Else 

6 /* generate vertex-cut for v*/ 

http://www.iirjet.org/
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7 N←θ; 

8 foreach Edge(v,u)€ EV do 

9 W←GetWorkerInfo(GetPartition(u.vid), 
φp); 

10 vr←N.get(w); 

11 If vr= null then 

12 vr←CreateVertex(v); 

13 N←N U {(W, vr)}; 

14 vr.AddEdge((vr,u)); 

15 /* select master vertex and assign copies 
to partition */ 

16 Wr←GetWorkerInfo(GetPartition(v.vid), 
φp); 

17 vm←null; pm←θ; 

18 Foreach(w,vr)€ N do 

19 If W=Wr then 

20 Vr.isMaster←true; 

21 M←M U {vr,GetPartition(v.vid)}; 

22 vm← vr; 

23 Else 

24 vr.isMaster←false; 

25 P←ChooseOnePart ition(W); 

26 M←M U{(Vr,P)}; 

27 Pm←Pm U{P.pid}; 

28 Vr.#allEdges← ǀEVǀ; 

29 If W /€ N.key Set() then 

30 vr←CreateVertex(v); 

31 M←{vr,GetPartition(v.vid)}; 

32 Vm.AddMirrorPartitionIds(Pm); 

 
 

V. CONCLUSION 

 
In this paper, we present our distributed graph 
processing engine epiCG. We develop epiCG as 
one extension of  epiC  to  avoid extra 
configuration for a new framework. epiCG 
supports both edge-cut and vertex-cut 
partitioning, and a light-weight approach is 
employed in  epiCG  to  parallelize  the  
generation  of  vertex-  cut partitions. epiCG also 
allows automatic failure detection and recovery. 
The experiments on real-life datasets illustrate the 
high efficiency and scalability of epiCG, 
compared with three state-of- the-art distributed 
graph processing systems such as, Giraph, 
PowerGraph and GiraphX. 
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