

 International Innovative Research Journal of Engineering and Technology

 ISSN NO: 2456-1983

www.iirjet.org Vol: 2 Special Issue ICEIET’17 IT 120

International Conference on Emerging Innovation in Engineering and Technology

ICEIET-2017

Graph Processing On A Distributed System For A Massive Scale Using
Epicg

P. Mathivanan1,S.Divya Bharathi2,B.Hemalatha2, G.Gayathri2

1Assistant Professor, 2Student, Department of Information Technology, Manakula Vinayagar Institute of

Technology, Pondicherry

I. ABSTRACT

A large numbers of focused graph processing systems have been developed to cope with the increasing
stipulate on graph analytics. Most of them require users to systematize a new framework in the
cluster for graph processing and toggle to other systems to accomplish non-graph algorithms. This
increases the involvedness of cluster management and results in unnecessary data transfer and redundancy.
In this paper, we propose our graph processing engine, named as epiCG, which is built on top of
epiC, an flexibility data processing system. The core of epiCG is a new unit called GraphUnit, which
is able to not only perform iterative graph processing streamlined, but also collaborate with other types
of units to accomplish any complex/multi-stage data analytics. The epiCG supports both edge-cut and
vertex-cut partitioning methods, and for the latter method, we propose a novel light-weight greedy
strategy that enables all the GraphUnits to generate vertex-cut partitioning in parallel. moreover, disparate
existing graph processing systems, malfunction revitalization in epiCG is absolutely automatic. We compare
epiCG with several graph processing systems via extensive experiments with real-life dataset and
applications. The results show that epiCG possesses high orderliness and scalability, and performs
tremendously well in large dataset settings, Proclaim its correctness for large-scale graph processing.

Keywords: EpiCG, epic, Vertex-cut, partitioning, Graph Unit, graph processing systems

II. INTRODUCTION

The increasing insists of graph analytics is the
foreseeable effect of the growing large scale and
magnitude of graph data. Big graph examples including
social network graphs, email and illustration message
graphs typically involve billions of vertices and edges.
For example, Facebook has over 1.5 billion monthly
active users at present. In recent years, a large number of
particular distributed graph processing systems such as
Pregel [1], Power- Graph [2], Giraph [3] and GPS [4]
have been proposed to handle complex graph analytics
tasks. These specialized systems gain their popularities
for two reasons. First, they follow the vertex centric
programming model introduced by Pregel that allows
users to articulate various graph algorithms in a natural
way. Second, most graph processing systems are
designed for iterative computation and are in-memory
processing systems [5] since they hold the graph data in
memory during iterations. Therefore, such systems
outperform the general purpose distributed systems such
as MapReduce [6,7] and its open-source
implementation Hadoop [8] that typically flush data to
the distributed file system at the end of each iteration
and reload data into memory in the beginning of the
next iteration.

The epiC system
epiC [12] was proposed to address data variety challenge

in Big Data. It adopts the Actor-like programming
model and provides a simple yet competent unit
crossing point to support various computation models.
In epiC, users can express different computation logics
by central different units. Each processing unit performs
computation in parallel with other units and
communicates with other units through message
passing. Messages, however, cannot be sent directly
between two units; each message is sent to the master
network (which is responsible for routing messages) and
then forwarded to the corresponding units. A unit
becomes active if it receives messages from the master
network. After parsing the message, the unit will load
data from the underlying storage and apply the user
defined computation logic to process the data
accordingly. When the unit completes its computation,
it flushes the output to the storage and becomes
inactive until it receives a new message.epiC adopts
the master-worker architecture. There is only a single
master node in epiC (this is different from the nodes in
the master network which are mainly responsible for
message routing). The master node runs a master
daemon which monitors the healthy statues of the slaves
and commands workers to execute tasks. Each worker
node establishes a worker tracker daemon. The worker
tracker manages a pool of worker processes which
accept a n d execute assigned unit tasks. In epiC, we
assign one unit task to one worker process.

http://www.iirjet.org/

 International Innovative Research Journal of Engineering and Technology

 ISSN NO: 2456-1983

www.iirjet.org Vol: 2 Special Issue ICEIET’17 IT 121

Distributed graph processing

The key idea of distributed graph processing is a
vertex-centric programming model proposed by
Pregel [1], which abstracts graph algorithms as the
computation for every vertex and message ex- change
between different vertices. Typically, the execution of
a graph job consists of three phases: data loading,
iterative computation and the output. In the data
loading phase, an input graph is loaded from the
underlying storage system and distributed among the
compute nodes. During iterative computation, each
compute node sequentially scans its received vertices
and executes a user- defined compute function for
each of them. Every vertex can update its value and
send messages to other vertices during the
computation. Pregel-like systems follow Bulk
Synchronous Parallel (BSP) model [13] and all the
compute nodes will proceed to the next iteration
synchronously, while some systems such as Power-
Graph [2] perform computation in

Fig. 1. Two graph partitioning
methods.

an asynchronous manner. Finally, in the output phase,
compute nodes flush the results (e.g., the computed
values of the vertices) to the storage system.
Essentially, distributed graph processing distributes
graph data and parallelizes computation tasks among a
cluster of compute nodes, thus accelerating the
processing significantly.

III. RELATED WORK

Distributed graph processing. There have been a
large number of systems proposed for graph
processing. Pregel [1] follows the Bulk Synchronous
Parallel (BSP) model and introduces a vertex- centric
programming model that allows users to express
graph algorithms in a natural way. Later on, various
implementation of Pregel have been developed.
Giraph [3] treats the computation as a map-only job
in MapReduce framework [6] where the in- put and
output data are stored in HDFS. Bu et al. [18]

proposed Pregelix, which runs iterative dataflows
dealing with computations, to conduct graph analysis.
Yan et al. implemented Pregel+, a C/C++ graph
system eliminating serialization cost introduced by
Java. Graphlab introduces a shared memory
abstraction which allows the adjacent vertices and
edges to be accessed by the local vertex and hence
enables users to concentrate on the sequential
computation by hiding the details of data movement
between vertices.
Since synchronization is indispensable in BSP model,
the stragglers, i.e., the workers who run much slower
than others, can significantly slow down the
synchronization process. Hence, Sal- ihoglu et al. [4]
introduced GPS which follows the same storage
design with Giraph but provides two optimizations.
The first one is to maintain dynamic partitions among

workers, and the second one is to divide the adjacency
list of high-degree vertices into different workers to
balance the loads of workers. Graph lab and
PowerGraph [2] employ Gather-Apply-Scatter (GAS)
model and can run in synchronous or asynchronous
mode. Asynchronous mode migrates the stragglers by
eliminating global synchronization cost. However, this
increases system complexity due to the concurrency
control for serializability.
Recent efforts focused on leveraging existing platforms
for graph processing. Simmen et al. [24] introduced
Aster 6 which provides SQL-like interface for graph
analytics. Similarly, Fan et al. [17] proposed Grail, a
syntactic layer for querying graph on top of
RDBMS, which translates graph queries into SQL
queries. GraphX [9] is built on Spark [10], which
implements Pregel by leveraging general dataflow
operators in Spark. To align the performance with the
specialized graph processing systems, various
optimizations for dataflow operators have been
proposed. This is different from our work as we
develop epiCG as one unit in epiC for graph processing
and reply on epiC to leverage different units for
complex analytics query processing. As an independent
unit, epiCG allows us to implement all the optimizations
proposed for the specialized graph processing systems.

Graph partitioning. Graph partitioning is critical to
distributed graph processing. While various edge-cut
partitioning methods [14] have been proposed to
balance the computation workload among multiple
compute nodes and try to minimize the network
communication cost, less attention has been paid to
vertex-cut partitioning. PowerGraph [2] proposed a
greedy strategy to generate vertex-cut partitioning,
which require to use a single compute node to load the
entire graph into memory, thus restricting the size of
graph that can be handled. SBV-cut and JA-BE- JA-
VC are two recent works for distributed vertex-cut
partitioning. However, both of them requires iterative
computation over the entire graph, which does not
allow multiple compute nodes to generate a vertex-cut
partitioning in parallel.

http://www.iirjet.org/

 International Innovative Research Journal of Engineering and Technology

 ISSN NO: 2456-1983

www.iirjet.org Vol: 2 Special Issue ICEIET’17 IT 122

IV. PROPOSED SYSTEM ARCHITECTURE

Figure 1: Proposed System Architecture

The architecture of epiCG. epiCG deploys the

distributed file system (DFS) as its underlying storage.

Typically, DFS contains the initial graph data to be
processed by epiCG and the final results produced by

epiCG. epiCG follows the single master- multiple worker
architecture of epiC. The master runs a master daemon
which maintains the healthy statuses of all the workers
and instructs workers to execute unit programs. We
divide workers into three categories to execute
masterGraphUnit, slaveGraphUnit and Zookeeper,
respectively. The masterGraphUnit coordinates su-
persteps among all the workers who execute
slaveGraphUnit and the Zookeeper maintains
information shared among these workers, e.g., which
worker has finished the execution of the current su-
perstep, how many workers have dumped a checkpoint.
Typically, given a set of workers, we choose one worker
to run the master- GraphUnit program. The
functionalities of the GraphUnits are listed as
follows.MasterGraphUnit. the
MasterGraphUnit program performs two tasks:

1. Partition and distribute the input graph among the
workers that run SlaveGraphUnit program.
2. Coordinate the SlaveGraphUnit workers to perform
super steps synchronously.

To perform these tasks correctly, MasterGraphUnit
maintains several important objects.

 MasterPartitioner: generate the vertex-to-
partition mapping list several important data structures
managed by each for the input graph.

 MasterClient: notify workers of the newly
computed global aggregated values.

 MasterAggregator: retrieve local aggregated
values from the workers and generate the global
aggregated ones.

SlaveGraphUnit. The SlaveGraphUnit program is
responsible for the following four tasks.

 WorkerServer: Retrieves and
manages the graph data that is assigned to the worker.

 WorkerPartitioner: Maintains partition
information for the vertices residing in the worker.

 WorkerClient: Forwards messages to the
zookeeper and other workers.

 WorkerAggregator: Computes aggregated
values and writes to the zookeeper.
SlaveGraphUnit maintains four important objects:

1. Load its assigned graph data and flush computation
results from/to the storage system.
2. Loop over vertices and execute compute ()
function.
3. Forward messages generated during the computation.
4. Generate aggregated values and write to the
zookeeper.

Once a graph job is submitted to epiCG, all the
workers will be activated immediately. At the
beginning of the execution, epiCG establishes pair wise
connections between GraphUnits. This is different from
epiC where units cannot communicate with each other
directly, but rely on the message service provided by
the master network. As most graph applications such as
PageRank and shortest path computation involve a
large number of messages, setting up direct
connections between units allows them to
communicate with each other more streamlined and
prevents the master network being the bottleneck

.

 ALGORITHM 1:GENERATE
VERTEX CUT

INPUT: v, a vertex

 φp, PartitionOwnerList

 n, the number of Partitions

OUTPUT:M:list of(copy,partition)pairs

1 M← θ;

2 EV←v.GetEdges();

3 if ǀEVǀ≤θ then

4 M←{(v,GetPartition(v.vid))};

5 Else

6 /* generate vertex-cut for v*/

http://www.iirjet.org/

 International Innovative Research Journal of Engineering and Technology

 ISSN NO: 2456-1983

www.iirjet.org Vol: 2 Special Issue ICEIET’17 IT 123

7 N←θ;

8 foreach Edge(v,u)€ EV do

9 W←GetWorkerInfo(GetPartition(u.vid),
φp);

10 vr←N.get(w);

11 If vr= null then

12 vr←CreateVertex(v);

13 N←N U {(W, vr)};

14 vr.AddEdge((vr,u));

15 /* select master vertex and assign copies
to partition */

16 Wr←GetWorkerInfo(GetPartition(v.vid),
φp);

17 vm←null; pm←θ;

18 Foreach(w,vr)€ N do

19 If W=Wr then

20 Vr.isMaster←true;

21 M←M U {vr,GetPartition(v.vid)};

22 vm← vr;

23 Else

24 vr.isMaster←false;

25 P←ChooseOnePart ition(W);

26 M←M U{(Vr,P)};

27 Pm←Pm U{P.pid};

28 Vr.#allEdges← ǀEVǀ;

29 If W /€ N.key Set() then

30 vr←CreateVertex(v);

31 M←{vr,GetPartition(v.vid)};

32 Vm.AddMirrorPartitionIds(Pm);

V. CONCLUSION

In this paper, we present our distributed graph
processing engine epiCG. We develop epiCG as
one extension of epiC to avoid extra
configuration for a new framework. epiCG
supports both edge-cut and vertex-cut
partitioning, and a light-weight approach is
employed in epiCG to parallelize the
generation of vertex- cut partitions. epiCG also
allows automatic failure detection and recovery.
The experiments on real-life datasets illustrate the
high efficiency and scalability of epiCG,
compared with three state-of- the-art distributed
graph processing systems such as, Giraph,
PowerGraph and GiraphX.

REFERENCES

[1] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C.
Dehnert, I. Horn, N. Leiser, G. Cza- jkowski,
Pregel: a system for large-scale graph
processing, in: SIGMOD, 2010.

[2] K. Lang, Finding good nearly balanced cuts
in power law graphs, Tech. Rep.YRL-2004-
036, Yahoo! Research Labs, 2004. [3]
http://giraph.apache.org/.

[4] S. Salihoglu, J. Widom, Gps: a graph
processing system, in: SSDBM, ACM, New
York, NY, USA, 2013, pp. 22:1–22:12.

[5] H. Zhang, G. Chen, B.C. Ooi, K.-L. Tan,
M. Zhang, In-memory big data man-
agement and processing: a survey, IEEE
Trans. Knowl. Data Eng. 27 (7) (2015)
1920–1948.

[6] J. Dean, S. Ghemawat, Mapreduce:
simplified data processing on large
clusters, in: OSDI, 2004.

[7] F. Li, B.C. Ooi, M.T. Özsu, S. Wu,
Distributed data management using
mapre- duce, ACM Comput. Surv. (CSUR)
46 (3) (2014) 31.

[8] http://hadoop.apache.org/.

[9] J.E. Gonzalez, R.S. Xin, A. Dave, D.
Crankshaw, M.J. Franklin, I. Stoica,
Graphx: graph processing in a distributed
dataflow framework, in: OSDI, 2014, pp.
599–613.

[10] M. Zaharia, M. Chowdhury, M.J.
Franklin, S. Shenker, I. Stoica, Spark:
cluster computing with working sets, in:
HotCloud, 2010.

[11] J.E. Gonzalez, Y. Low, H. Gu, D.
Bickson, C. Guestrin, Powergraph:
distributed graph-parallel computation on

http://www.iirjet.org/
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F7369676D6F642F4D616C657769637A414244484C433130s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726772617068s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726772617068s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726772617068s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726772617068s1
http://giraph.apache.org/
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib677073s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib677073s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib677073s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7A68616E67323031356D656D6F7279s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F4465616E473034s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib6C69323031346469737472696275746564s1
http://hadoop.apache.org/
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F6F7364692F476F6E7A616C657A58444346533134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib737061726Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1

 International Innovative Research Journal of Engineering and Technology

 ISSN NO: 2456-1983

www.iirjet.org Vol: 2 Special Issue ICEIET’17 IT 124

natural graphs, in: OSDI, 2012.

[12] D. Jiang, G. Chen, B.C. Ooi, K.-L. Tan,
S. Wu, epiC: an extensible and scalable
system for processing big data, Proc.
VLDB Endow. 7 (7) (2014) 541–552.

[13] L.G. Valiant, A bridging model for
parallel computation, Commun. ACM 33
(8) (1990) 103–111.

[14] G. Karypis, V. Kumar, Metis-
unstructured graph partitioning and sparse
matrix ordering system, version 2.0.

[15] R. Chen, J. Shi, Y. Chen, H. Guan, H.
Chen, Powerlyra: differentiated graph
com- putation and partitioning on skewed
graphs, Tech. rep., 2013.

[16] Y. Shen, G. Chen, H.V. Jagadish, W. Lu,
B.C. Ooi, B.M. Tudor, Fast failure recov-
ery in distributed graph processing

systems, Proc. VLDB Endow. 8 (4) (2014)
437–448.

[17] J. Fan, A.G.S. Raj, J.M. Patel, The case
against specialized graph analytics
engines, in: CIDR, 2015.

[18] Y. Bu, V.R. Borkar, J. Jia, M.J. Carey, T.
Condie, Pregelix: big(ger) graph analytics
on a dataflow engine, Proc. VLDB Endow.
8 (2) (2014) 161–172.

[19] C. Xie, R. Chen, H. Guan, B. Zang, H.
Chen, Sync or async: time to fuse for
distributed graph-parallel computation, in:
PPoPP, 2015, pp. 194–204.

[20] L. Page, S. Brin, R. Motwani, T.
Winograd, The pagerank citation ranking:
bring- ing order to the web, Tech. rep.,
1999.

http://www.iirjet.org/
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib506F77657247726170684F534449s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4A69616E673A323031343A4545533A323733323238362E32373332323931s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4A69616E673A323031343A4545533A323733323238362E32373332323931s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4A69616E673A323031343A4545533A323733323238362E32373332323931s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib4A69616E673A323031343A4545533A323733323238362E32373332323931s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib56616C69616E743A313939303A424D503A37393137332E3739313831s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib56616C69616E743A313939303A424D503A37393137332E3739313831s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib56616C69616E743A313939303A424D503A37393137332E3739313831s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib56616C69616E743A313939303A424D503A37393137332E3739313831s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib706F7765726C797261s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F5368656E434A4C4F543134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F636964722F46616E52503135s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F636964722F46616E52503135s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F636964722F46616E52503135s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A636F6E662F636964722F46616E52503135s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F4275424A43433134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F4275424A43433134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F4275424A43433134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib44424C503A6A6F75726E616C732F70766C64622F4275424A43433134s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib5869653A323031353A5341543A323638383530302E32363838353038s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib5869653A323031353A5341543A323638383530302E32363838353038s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib5869653A323031353A5341543A323638383530302E32363838353038s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib5869653A323031353A5341543A323638383530302E32363838353038s1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1
http://refhub.elsevier.com/S2214-5796(15)30034-4/bib7061676572616E6Bs1

