
International Innovative Research Journal of Engineering and Technology

Vol. 7, Issue. 4, June 2022, pp. 10~18

ISSN: 2456-1983, DOI: 10.32595/iirjet.org/v7i4.2022.157  10

Journal homepage: https://iirjet.org/

Challenging the Robustness of Self-Managing Computing

Systems for QoS Controller Design

Sangwoo Jeon
1
, Sakthivel Velusamy

2

1Department of Computer Science and Engineering, Konkuk University, Seoul, South Korea
2School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India

Article Info ABSTRACT

Article history:

Received Mar 15, 2022

Revised May 20, 2022

Accepted Jun 11, 2022

 A widespread interest in lowering the requirement for human involvement by

enabling systems to operate autonomously has been sparked by the high

expense of running massive computing installations. The extent to which

control theory can offer an analytical and architectural basis for developing

self-managing systems is examined in the present research. For the QoS

management of such systems, these methods often employ fixed, adaptive, or

single model based control techniques. However, it is challenging to create a

single model or controller that would provide the required QoS performance

over all of these systems' operational zones due to the variable system

dynamics and unforeseen environmental changes. The goal of a novel

approach known as self-managing computer systems is to incorporate into

the systems the means by which they can automatically modify configuration

parameters to ensure that the system's Quality of Service requirements are

continuously satisfied. In this research, we assess the resilience of such

approaches under high variable workloads in terms of request service times

and inter-arrival times. This research also makes a contribution by evaluating

how workload forecasting techniques are used in QoS controller design.

Keywords:

Robustness

self-managing computer

systems

QoS controller design

computing installations

Corresponding Author:

Sangwoo Jeon,

Department of Computer Science and Engineering,

Konkuk University, Seoul, South Korea.
Email: jswp5580@konkuk.ac.kr

1. INTRODUCTION

The complexity of computer systems is rising. Large and heterogeneous numbers of hardware and

software components, multi-layered architecture in system design, and workloads that are unpredictable—

particularly in Web-based systems—are some of the factors that contribute to complexity in systems. These

explanations explain why performance management of complex systems is costly and challenging for

humans to do. A novel strategy known as self-managing computer systems involves incorporating the

necessary mechanisms into the systems to self-adjust configuration parameters in order to guarantee that the

system's Quality of Service (QoS) needs are continuously satisfied [1]. The papers presented at a recent

workshop demonstrate the growing interest in self-managing systems. In this investigation, we offer a

method to build controllers that run frequently (e.g., every few minutes) to find the optimal configuration for

the system given its workload. This is achieved by combining combinatorial search techniques with

analytical performance models. We initially use a simulated multithreaded server to demonstrate and

motivate the concepts. Then, we present experimental findings from an actual Web server running a

workload produced by the Scalable URL Reference Generator, utilising the methods presented here.

Owing to the high cost of ownership of computer systems, the sector has launched several initiatives

to lighten the workload for management and operations. Microsoft's Dynamic Systems Initiative, HP's

Adaptive Infrastructure, and IBM's Autonomic Computing are a few examples. All of these efforts aim to

lower operating costs through more automation; as operator error has been found to be a primary cause of

system failures [2], the ideal scenario would be for systems to be self-managing without the need for human

interaction. Although the idea of automated operations has been around for 20 years as a means of

responding to shifting demands, malfunctions, and—more recently—attacks, the automation's use is still

  ISSN: 2456-1983

IIRJET, Vol. 7, Issue. 4, June 2022: 10 – 18

11

somewhat restricted. We think that this is partly because there is a lack of basic knowledge about how

automated actions impact system behaviour, particularly system stability. Control theory is used in several

fields of engineering, including mechanical, electrical, and aeronautical engineering, to build feedback

systems.

Figure 1. A Control System's Block Diagram

A feedback control system's block diagram is displayed in Figure 1 [3]. The target system is the one

that the controller is in control of. A set of performance indicators for features of interest (such response

time), also known as outputs, are provided by the target software system. While actuators allow the control

input—such as resource allocation—to be changed to alter the system's behaviour, sensors track the target

system's outputs. The control system's decision-making component is the controller. Because there is no

formal or systematic design process, it is becoming more and more difficult to develop fixed and ad-hoc

threshold-based policies that depend on peak demands. Traditional approaches now in use, such manual

tuning, have proven to be expensive and error-prone. Implementing strategies that overcome these constraints

by giving software systems the ability to make decisions at runtime and manage themselves with little to no

human input is crucial.

Following these objectives, the rest of the paper is organised, with Sections 2, 3, and 4 addressing

each in turn. Our findings are detailed in Section 5.

2. RELATED WORKS

An application must dynamically detect and react, swiftly and accurately, to changes in the Grid

DCE as well as in its own state and requirements in order to address these features and achieve required QoS

limits [4]. This usually entails the dynamic adaptation of a number of functional and performance-related

elements to the needs of the running application and environment. Maintaining defined QoS limits using

current methodologies based on ad hoc human tuning and heuristics is not only time-consuming and prone to

error, but also impractical as systems and applications grow in size and complexity. In order to handle

increasing complexity, systems and apps must eventually become primarily autonomous, or able to manage

themselves with high-level advice from specialists.

The development of self-managing systems in response to various issues arising from highly

decentralised and heterogeneous architectures has been facilitated by autonomous computing (AC) [5]. The

basis of autonomic computing is biology. In actuality, the body's autonomic nerve system works nonstop to

preserve physiological equilibrium. Comparatively speaking, AC is necessary for information technology

(IT) to dynamically respond to changes in the environment. Each domain of machine-to-machine

communication may exhibit different autonomic behaviour expressions, which frequently leads to a radically

different autonomic manager and yet functions building.

Operating conditions in mobile computer environments are very different from those in wired

computing environments [6]. Applications specifically need to be able to withstand the extremely dynamic

channel conditions that develop when users move around the space. Furthermore, the display qualities, CPU

speed, memory capacity, and battery life of the computer devices utilised by various end users may differ.

Real-time applications like video conferencing are particularly susceptible to these changes because of their

synchronous and interactive character.

- Controller A
Target

System
S

Set Point

(r)

Error

(e)

Control

Input (u)
Output

(u)

Actuator Sensor

IIRJET ISSN: 2456-1983 

Challenging the Robustness of Self-Managing Computing Systems for QoS Controller Design

12

System convergence is seen even in the face of modelling errors, innate system nonlinearities, and

changes in system parameters over time because of the robustness of the feedback mechanism, which also

produces self-correcting, self-stabilizing behaviour in system performance. Still, it's fundamentally a

reactionary strategy [7]. In order for the feedback loop to function, measured deviations from the target

performance must be addressed by taking corrective action in an effort to bring the deviation down to zero.

Sadly, a feedback controller that monitors the current delay won't know about the approaching overload until

it really happens. Given that the server response time is a moving average that fluctuates slowly, this

response delay is very significant.

Protocol layering has long been the foundation for communication network engineering. This entails

creating discrete network functionality (such media access, routing, and flow management) and assembling

the entire system via constrained interfaces between the layers carrying out these particular functions [8]. In

reality, the layers are dispersed systems with cooperating units spread throughout the network; they are

organised in a vertical hierarchy. Every layer uses the services offered by the levels beneath it, and in return,

the layers above it can use the services that each layer offers. Only procedure calls and responses are allowed

to occur during inter-layer communication, which only occurs between adjacent layers.

Within an online control framework, we examine the design of computer systems that optimise

themselves [9]. Control theory offers a methodical approach to resource management in a broad context. It is

possible to derive the control actions necessary to maintain a specific quality of service (QoS) by optimising

a given cost function if the computer system is adequately modelled and the operating environment is

accurately assessed. Additionally, it offers tried-and-true mathematical methods for analysing the accuracy

and performance of systems, and it has lately been successfully used to solve issues like task scheduling and

QoS adaption in web servers.

In this paper, we discuss our methodology for designing self-configurable and self-managing

computer systems utilising analytic performance models. This strategy is demonstrated in a number of our

publications. Here, we offer a comprehensive structure, outline the difficulties, and provide a summary of the

outcome. The second section covers our overall strategy for managing computer systems [10]. Protocols and

procedures are required for effective QoS objective negotiation, oversight, and enforcement. These systems

are heterogeneous; hence platform-neutral language must be used to define QoS objectives and contracts.

3. METHODS AND MATERIALS

3.1 Design and control system

There are typically two primary processes in the design of a control system. First, it is necessary to

build a formal link between the control input and the output. This link is known as the behavioural model of

the system in control theory. System identification (SID) is a technique that measures input and output data in

order to build the model. The second phase, which comprises controller design, simulation, analysis, and

testing, then makes use of the system paradigm. In addition to meeting operational objectives, the feedback

controller must respond to unforeseen disruptions and unmodeled system dynamics. Furthermore, there exist

recognized formal approaches and methodologies for the design, development, and analysis of the control

system's operational specifications, such as stability, settling time, and exceeding.

Different control systems, including fixed gain, adaptive, and reconfigurable controllers, can be

developed using the main approaches mentioned above. The design, benefits, and drawbacks of various

control strategies are covered in the sections that follow, along with examples of their use in QoS

management from the literature.

3.1.1 Control with fixed gain

A fixed-gain control scheme's topology resembles that of Figure 1.1 [11]. As previously indicated,

SID experiments are carried out offline in order to construct the system model. Usually, the system's

behavioural model is described by autoregressive exogenous input (ARX) models. The ARX model has the

following standard form:

 () ∑

 () ∑

 () (1)

Where l is the current sample instance, () are the model's order, , are its parameters, e is the

delay—the amount of time it takes to notice a change in the input in the output.

The input and output data obtained from SID experiments are used to determine the order,

parameters, and latency of the system model. The controller is developed with the goal of minimizing the

difference between the target setting point and the actual output signal using the model that was created

during the model identification step. For the purpose of designing a controller that meets the control

objectives, a model that is accurate enough is needed. Even with model uncertainties and imperfections, well-

designed feedback control architecture can successfully manage performance. For this reason, the various

  ISSN: 2456-1983

IIRJET, Vol. 7, Issue. 4, June 2022: 10 – 18

13

versions of the Proportional Integral Derivative (PID) controller are frequently employed because of its ease

of use, resilience to modelling mistakes, and capacity to reject disturbances. Gains, which are tuning

parameters in these controllers [12], can be changed to get the required performance requirements.

3.1.2 Adaptive management
With adaptive control, some of the drawbacks of fixed gain controllers are circumvented by

dynamically predicting model parameters and modifying the controller's gains to meet high-level design

goals. Changes in the system model as a result of different situations are recorded and incorporated into the

controller design online. The multi-model behaviour of the software systems is thus captured by adaptive

control. Adaptive control, however, operates under the fundamental premise that the model parameters either

stay constant or change gradually over time.

On the other hand, performance degradation leading to high transient reactions and temporal

instabilities is widely documented in the literature. Software systems are susceptible to rapidly changing

circumstances, such as unexpected spikes in demand [13], "Slashdot" effects, component failures, and the

garbage collection process. Other restrictions on adaptive control include the computing expense resulting

from online design and estimate.

As it takes time to develop the estimations, the start-up performance could not be adequate.

Additionally, in order for these methods to estimate the model quickly and accurately, the input signal must

contain a wide enough frequency range to excite the system (a condition known as persistently stimulating).

3.1.3 Reorganising the control system

Through online adjustments to the controller parameters, the adaptive control method offers greater

flexibility than the non-adaptive scheme. Still, the loop's filters and other component arrangements, as well as

the controller algorithm, remain constant across time. As operational conditions and disturbances change,

various control algorithms or loop arrangements might offer more control. The fundamental concept of the

reconfiguring control scheme is to adjust the control loop structure, models, and algorithms to deal with the

system's shifting working areas and external circumstances. Furthermore, it is possible to circumvent certain

prerequisites for adaptive control (such a continuously stimulating signal and gradually altering conditions)

by merging several fixed gain controllers and choosing an appropriate one at runtime.

Moreover, it is possible to mix fixed and adaptive control systems to enhance performance in rapidly

changing circumstances. As a result, this method helps to choose suitable control loop configurations at

runtime and capture the multi-model aspect of the software system. However, because of the design and

assessment of the various models and controllers, there are compromises between the system's runtime

overhead and design complexity.

Furthermore, it could be necessary to have previous knowledge about the system and the

surrounding environment in order to develop appropriate reconfiguration methods. Another problem that can

arise during control reconfiguration is buzzing. When a system alternates between controllers or loop

configurations repeatedly without offering the desired control, it is referred to as chattering. Significant drops

in performance could result from this.

3.2 Controller Method

More specifically, the controller is predicated on the idea that a computer system is improved by a

Quality of Service (QoS) controller that i) keeps track of system performance, ii) keeps track of how the

system's various resources are being used, and iii) periodically runs a controller algorithm known as

controller intervals (CI) to find the optimal configuration for the system (refer to Figure 2) [14]. The

controller algorithm generates reconfiguration directives as a result, telling the system to adjust its

configuration.

IIRJET ISSN: 2456-1983 

Challenging the Robustness of Self-Managing Computing Systems for QoS Controller Design

14

Figure 2. Intervals for the controllers

The most useful illustration of the QoS controller's architecture is provided by Figure 3. The four

primary parts of the QoS controller are the Performance Model Solver (4), Workload Analyser (3), QoS

Controller Algorithm (5), and Service Demand Computation (2). In order to calculate the throughput, the

Service Demand Computation (2) component gathers utilisation statistics (1) on all system resources (such as

CPU and discs) in addition to the number of completed requests (7). The ratio of resource utilisation to

system throughput can be used to calculate the service demand of a request, or the overall average service

time of a request at a resource. The Queuing Network (QN) model of the computer system, which is solved

by the Performance Model Solver component, uses the service demands (8) that this component computes as

input parameters.

The Workload Analyser (3) component examines the stream of incoming requests (6), computes

average arrival rate and other workload intensity statistics, and forecasts the workload intensity for the

upcoming controller interval using statistical methods. The workload intensity values (9) that this component

computes, whether present or predicted are also used as input parameters for the Queuing Network model

that the Performance Model Solver component (4) solves. The QoS Controller Algorithm sends requests (10)

to this component to solve the QN model associated with a particular system configuration.

Requests Requests

i-th Controller interval (i+1)-th Controller interval

Execution of Controller Algorithm

Reconfiguration Commands

  ISSN: 2456-1983

IIRJET, Vol. 7, Issue. 4, June 2022: 10 – 18

15

Figure 3. Structure of the QoS Manager

The Performance Model Solver must calculate this QoS value for every point in the configuration

point space that the QoS controller algorithm looks at. The QoS controller sends reconfiguration commands

(12) to the computer system after deciding on the optimal configuration for the workload intensity levels

given by the Workload Analyser.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

For the experiments pertaining to workload variability, Figure 4 shows the fluctuation of workload

intensity, measured in requests/sec, as a function of time, measured in controller interval units. Each

experiment lasted 30 CIs, or 60 minutes total because each CI was set for two minutes. The average service

requests for the disc and CPU were 0.05 and 0.03 seconds, respectively [15]. Consequently, the system can

sustain a maximum theoretical arrival rate of 20 req/sec.

COMPUTER SYSTEM

Service Demand

Computation

Qos Controller

Algorithm

Workload Analyzer
Performance Model

Solver

Qos

goals

Completing

Requests

Arriving

Requests

(1)

(2)

(3) (4)

(5)

(6) (12)

Qos

Controller

IIRJET ISSN: 2456-1983 

Challenging the Robustness of Self-Managing Computing Systems for QoS Controller Design

16

Figure 4. Variation in Workload Intensity for the High Variability Experiments

At CI = 19, the average arrival rate approaches the theoretical limit, peaking at 19 req/sec. It begins

at a low value of 5 req /sec. After three CIs, the workload intensity remains at this level before beginning to

decline towards 14 requests per second. For every combination of Ca and Cs, ten trials were conducted, and

at the conclusion of each CI, 95% confidence intervals for the average QoS value were calculated. Three

situations were found to have results for:

Two of them have the QoS controller turned on, while one has the controller turned off. The

combinatorial optimisation methods that the controller uses—beam search and hill-climbing—differ between

the two outcomes in which the controller is active. The results of our earlier investigation for the situation of

exponentially dispersed inter-arrival and service times are displayed in Figure 5. Even at high peak loads, the

controlled system maintains substantially higher QoS values than the uncontrolled system.

Figure 5. Impact of Tighter and Looser SLAs on Controller Performance

The QoS optimizer module in our proposed self-managing computer systems estimates the expected

workload intensity for the upcoming controller interval (CI) based on the average arrival rate of requests

from the previous CI. The performance model then uses this value to calculate the QoS worth for a particular

0

2

4

6

8

10

12

14

10 20 30 40

A
v
er

a
g
e

Q
o
S

Controller Interval

Hill climbing

No Beam

No controller

0

1

2

3

4

5

6

10 20 30 40

A
v

er
a

g
e

Q
o

S
 R

el
a

ti
v

e
V

a
ri

a
ti

o
n

Controller Interval

No controller

Relaxes SLA

No controller

Strict SLA

Beam Search

relaxes SLA

  ISSN: 2456-1983

IIRJET, Vol. 7, Issue. 4, June 2022: 10 – 18

17

set of setup parameters. The disadvantage of this strategy is that it ignores any patterns of workload growth or

decrease over the previous CI. As a consequence, there may be a significant error in estimating the next

projected arrival rate and a poor selection of configuration parameters.

We introduced a module in charge of short-term workload forecasting to address this weakness. The

most recent average arrival rates for the last N tiny sub-intervals are stored in this module using a sliding

window of N values. These sub-intervals are all ∆ seconds long. In order to ensure that N × ∆ does not

surpass the duration of a controller interval, N and ∆ are selected. For short-term forecasting, numerous

methods can be applied.

All types of data cannot, however, be accurately forecasted using any one method. Consequently,

balanced moving averages, polynomial regression, and exponential smoothing are the three methods used by

the forecasting module. Since exponential smoothing is well-known for being effective at producing

predictions from time series data that show upward or downward trends, it was incorporated. The following

is how exponential smoothing calculates a prediction: This indicates that there will be periods of time where

the workload remains relatively steady for a considerable amount of time before shifting dramatically. In

these cases, weighted moving averages are a useful strategy.

Since polynomials can approximate any continuous function very well, polynomial regression was

selected as the third forecasting technique. The fitting gets better with increasing polynomial degree.

However, we chose a reasonably high polynomial degree—six—in order to avoid significantly increasing the

controller's overhead during the regression model computation.

Figure 6. Variation in Workload Intensity for the Workload Forecasting Experiments

Figure 6 shows a comparison between the actual measured arrival rate and the projected arrival rate

at each controller interval when the forecasting module was engaged or disabled. Please take note that the

data in the sliding window for forecasting is only available at this time, which is why we begin at the second

controller interval in this picture. Two peaks at 30 req/sec at CI = 8 and CI = 24 are present in the real

workload.

With each new average arrival rate entry placed into the sliding window, all three models are

reconstructed. We now calculate what the predicted value would be based on each of the three models. In

order to evaluate the quality of the fits, we additionally calculate each model's R2 value using the least

squares errors approach. At this point, the model with the highest R2 value forecasted the value that the

forecasting module returns.

5. CONCLUSION

The argument made in this work is that self-managing systems can be constructed using control

theory as an analytical and architectural foundation.

0

1

2

3

4

5

6

10 20 30 40

L
a
m

b
d

a

Controller Interval

Measured Lamba

Expected

Lambda_wothout_foreca

sting

Expected

Lambda_with_forecastin

g

IIRJET ISSN: 2456-1983 

Challenging the Robustness of Self-Managing Computing Systems for QoS Controller Design

18

According to our experimental findings, the suggested method was successful in identifying a

sizable number of controller failures that could have a detrimental effect on the self-adaptive system's

resilience. Our method hasn't been able to find any catastrophic, restart, or hindering failures in the controller,

despite the relevant amount of failures found. While the limited observability of the controller's internal

behaviour may be the cause of this, other variables, such the controller's architectural resilience, may also be

a likely explanation for the observed outcomes.

In this instance, knowing the precise QoS values of two places in the search space is less significant

than accurately comparing them. The study's findings also demonstrate how workload forecasting, when

applied to a regulated system, can enhance quality of service (QoS), particularly when the workload intensity

is approaching saturation. Additionally, it was demonstrated that compared to the non-controlled system, the

controlled system is far less sensitive to the SLA values.

REFERENCES
[1] Menascé, D. A., & Bennani, M. N. (2003, December). On the use of performance models to design self-managing

computer systems. In Int. CMG Conference (pp. 1-9).

[2] Bennani, M. N., & Menascé, D. A. (2004, May). Assessing the robustness of self-managing computer systems

under highly variable workloads. In International Conference on Autonomic Computing, 2004. Proceedings. (pp.

62-69). IEEE.

[3] Diao, Y., Hellerstein, J. L., Parekh, S., Griffith, R., Kaiser, G. E., & Phung, D. (2005). A control theory foundation

for self-managing computing systems. IEEE journal on selected areas in communications, 23(12), 2213-2222.

[4] Bhat, V., Parashar, M., Liu, H., Khandekar, M., Kandasamy, N., & Abdelwahed, S. (2006, June). Enabling self-

managing applications using model-based online control strategies. In 2006 IEEE International Conference on

Autonomic Computing (pp. 15-24). IEEE.

[5] Alaya, M. B., Matoussi, S., Monteil, T., & Drira, K. (2012, September). Autonomic computing system for self-

management of machine-to-machine networks. In Proceedings of the 2012 international workshop on Self-aware

internet of things (pp. 25-30).

[6] Khandekar, M. D., Kandasamy, N., Abdelwahed, S., & Sharp, G. C. (2005). An online predictive control

framework for designing self-managing computing systems. Multiagent and Grid Systems, 1(2), 63-72.

[7] Bai, J. (2008). A model integrated framework for designing and optimization of self-managing computing systems

(Doctoral dissertation).

[8] Boutaba, R., & Xiao, J. (2007). Self‐Managing Networks. Cognitive Networks: Towards Self‐Aware Networks, 77-

95.

[9] Kandasamy, N., Abdelwahed, S., Sharp, G. C., & Hayes, J. P. (2004, June). An online control framework for

designing self-optimizing computing systems: Application to power management. In Self-star Workshop (pp. 174-

188). Berlin, Heidelberg: Springer Berlin Heidelberg.

[10] Cámara, J., De Lemos, R., Laranjeiro, N., Ventura, R., & Vieira, M. (2014). Testing the robustness of controllers

for self-adaptive systems. Journal of the Brazilian Computer Society, 20, 1-14.

[11] Patikirikorala, T., Colman, A., Han, J., & Wang, L. (2011, May). A multi-model framework to implement self-

managing control systems for QoS management. In Proceedings of the 6th international symposium on software

engineering for adaptive and self-managing systems (pp. 218-227).

[12] Nijim, M., Xie, T., & Qin, X. (2005). Performance analysis of an admission controller for CPU-and I/O-intensive

applications in self-managing computer systems. ACM SIGOPS Operating Systems Review, 39(4), 37-45.

[13] Reich, C., Bubendorfer, K., & Buyya, R. (2007). A Scalable Self-Managing Architecture for WSRF Services.

[14] Khandekar, M. D., Kandasamy, N., Abdelwahed, S., & Sharp, G. C. A Control-based Framework for Self-

Managing Distributed Computing Systems.

[15] Menascé, D. A. (2020). Self-managed computer systems: Foundations and examples. In Enterprise Information

Systems: 21st International Conference, ICEIS 2019, Heraklion, Crete, Greece, May 3–5, 2019, Revised Selected

Papers 21 (pp. 17-36). Springer International Publishing.

