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The process of channel estimation is essential for precise signal detection and 

smooth data recovery on Multiple-Input Multiple-Output Orthogonal 

Frequency Division Multiplexing (MIMO-OFDM) systems which are widely 

used because they are both spectrally efficient and resistant to multipath 

fading. Even so, standard channel estimation approaches like Least Squares 

(LS) and Minimum Mean Square Error (MMSE) perform poorly when 

shadowing is nonlinear, Doppler is high and the SNR is low. They assume 

the environment does not vary and is like previous scenarios which does not 

always match the real-world characteristics of wireless channels. Based on 

the challenges stated, this study makes use of Convolutional Neural 

Networks (CNNs) to suggest a new framework for estimating channel 

conditions from wireless signals. The proposed algorithm learns a complex 

relationship between the received signal and the channel responses which 

means it can improve the accuracy of cellular channel estimation by simply 

using pilot signals without understanding the channel model. Many 

simulations are carried out for different channel conditions, covering 

Rayleigh fading, high mobility and various signal-to-noise ratios. Every time, 

evaluations discovered that the suggested method based on CNN achieves a 

much lower BER and MSE compared to standard LS and MMSE estimators, 

showing the most benefit in tough channel conditions where others falter. 

Besides, the strong results and broad applicability of the proposed method 

allow it to be deployed in future wireless networks like 5G and above, where 

channel estimation is very important. The paper shows that adding deep 

learning to physical layer communication can improve wireless technologies 

and makes way for future networks that self-adjust to different surroundings. 
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1. INTRODUCTION 
Because wireless communication technology is growing rapidly, it is now necessary to build 

systems that work well under various operating conditions. Multiplying Inputs and Outputs (MIMO) with 

Orthogonal Frequency Division Multiplexing (OFDM) is a main reason for the success of both 5G and 6G 

networks. MIMO-OFDM helps because it allows more data to be sent using less spectrum, offers higher data 

rates and works well in fading environments [5]. In this case, how well these systems function depends 

greatly on the accuracy of channel state information (CSI) at the receiver end. Because of this, it is important 

to accurately calculate the channel in MIMO-OFDM systems, especially where movement and noise are 

high, since this helps achieve reliable and fast data in those conditions [6,7]. 

Using Least Squares (LS) and Minimum Mean Square Error (MMSE) channel estimation techniques 

is popular since they are easy to use and mathematically convenient for many cases. LS estimators are a 

simple way to obtain a solution, even for those without statistical background, compared to MMSE 

techniques which use information on noise and channel in order to perform better. In practice, these strategies 

do encounter many important barriers. Aspects they assume such as fixed channel properties, reliable same-
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power pilot signals and consistent signal-to-noise ratios, are seldom seen in real life. Thus, their operation 

can slow down greatly in areas with lots of movement, complex fading or few pilot signals [8,9]. 

With recent progress in deep learning, it is now possible to use data-driven methods for channel 

estimation that overcame the problems of older approaches [10]. Neural networks can model relationships 

that are not easy to detect using mathematical approaches because they use information found in data itself. 

For analyzing signals that involve time and space, Convolutional Neural Networks (CNNs) are often a good 

choice and can find helpful features in noisy input signals. A CNN-based framework for channel estimation 

in multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is proposed 

here. Reasons for adopting a lightweight, flexible architecture are to deploy into cellular networks quickly 

and support different mobile usage patterns, signal environments and SNRs. Complete experiments and 

evaluations have shown that the new method performs much better than traditional estimators when it comes 

to being accurate and robust. 

 

 
 

Figure 1. Comparative Overview of Traditional and CNN-Based Channel Estimation Techniques forMIMO-

OFDM Systems 

 

 

2. LITERATURE REVIEW 
Getting channel estimation right makes 5G and related technologies function well. Simplicity and 

easy analysis have made LS and MMSE conventional channel estimation techniques that are commonly used. 

LSE estimators do simple linear estimation without using channel samples and MMSE estimators improve 

accuracy by using extra information about the noise and how the channel varies over time. Still, these ways 

of communication are based on unrealistic assumptions such as exact statistical equations, error-free pilot 

symbols and unchanging surroundings. With many users moving around, signal bands of interest and 

changing signal-to-noise ratios, these estimators usually do not function well, so people look for smarter and 

more flexible ways to estimate [11,12]. 

Lately, deep learning has influenced investigations into data-based ways of estimating channels. [1] 

were the first to use autoencoders in wireless communication, developing a full deep learning network that 

automatically handles channel estimation and data decoding. It proved that neural networks are better able to 

explain detailed channel activities than usual algorithms. Immediately afterwards, [2] came up with a CNN 

model to handle channel estimation for MIMO pilots. Impulsive noise removal improved the BER and MSE 

results when they worked with different channel conditions. In a similar way, [3] analyzed deep learning 

models for massive MIMO, pointing out their reliability even when MIMO systems are affected by very 

mobile users. [4] Introduced Deep Residual Networks (ResNet), making use of spatial and frequency 

correlations to improve their channel estimation results. 

Yet, using deep learning in channel estimation is still not perfect, as these methods may take a lot of 

computation, are not universal for every channel type and can be harmed by changes in noise levels they 

have not experienced before. Also, some models learn from datasets that do not capture all aspects of real 

situations which makes them less effective during use. We try to handle these drawbacks by creating a 

lightweight CNN network that can strike a good balance between accuracy and computations. The model is 

designed to be robust in different wireless environments, thanks to training it on data with various SNR 

values, fading characteristics (Rayleigh and Rician) and Doppler shifts. Also, by using convolutional layers, 

the model is able to learn how signals are related to each other in space which makes it convenient for 

modern wireless receivers that must run in real-time. 
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3. METHODOLOGY 

 

3.1. Dataset Generation 
A dataset was made using MATLAB to simulate a MIMO-OFDM system and accurately prepare the 

deep learning model for training and evaluation. The environment was developed so it could very closely 

resemble real-world wireless networks using physical layer factors. The important configuration used in the 

system was Quadrature Phase Shift Keying (QPSK) which increases performance while managing noise. 64 

subcarriers were picked for OFDM, so the channel can be represented with sufficient levels of detail. The 2 

transmit and 2 receive antennas arranged as a 2×2 MIMO configuration gave the system spatial multiplexing 

and diversity gain. 

 

 
 

Figure 2. Block diagram of simulation and data generation pipeline 

 

Both Rayleigh and Rician fading channels were included to check how well the model works in 

different wireless conditions. Rayleigh describes areas with no clear path between transmitter and receiver, 

whereas Rician describes cases where the received signal mainly comes from one direct route. Signal-to-

Noise Ratio (SNR) was adjusted evenly from 0 dB to 30 dB to test low, moderate and high signal 

performance. Also, to represent the needs of high-mobility systems using vehicles or drones, 100 Hz Doppler 

shifts were included in the channel models. Each sample had its parameters changed randomly to achieve a 

variety of data and help the network generalize well in many wireless scenarios. 

Every data point in the dataset included both the real and the imaginary parts of the transmitted and 

received OFDM symbols. The individual parts were separated, then linked together as the input you’ll feed to 

the neural network. In particular, the real and imaginary values of the transmitted and received signals were 

divided, then their values were combined to become the inputs for the model. Just like the simple channel 

matrix a ,corresponding complex channel matrix H  which shows the properties of the transmission medium, 

was divided into real and imaginary parts and made into ground truth to train the network. Because of this 

organized structure, the convolutional neural network can easily spot connections in the signal that relate to 

both space and frequency and this helps it make good channel estimation in many challenging cases. 

 

3.2 Model Architecture – Detailed Explanation 

The channel estimation model suggested is built with a CNN that is intended for handling the 

MIMO-OFDM system’s special features. The architecture is designed to perform well and use less 

computing power which supports its use in fast wireless systems such as 5G and 6G. 

 

Input Structure 

The data for the convolutional neural network takes the matrix form [64 × 4] which includes all the 

needed information for channel estimation in a 2×2 MIMO-OFDM system. The number of OFDM 

subcarriers matches the 64 rows here, resulting in fine detail in the frequency domain. There are four values 

in each row which show the real and imaginary parts of the transmitted (X) and received (Y) signals. In 

detail, for every subcarrier, the input is the real part of X, the imaginary part of X, the real part of Y and the 

imaginary part of Y. With this format, the model gets a full and legible presentation of the whole signal’s 
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behavior at all frequencies and through all antenna paths. Since the input matrix combines amplitude and 

phase data, the CNN is able to study both space and frequency properties of the channels, greatly helping it 

do reliable channel estimation under different channel situations. 

 

Convolutional Feature Extraction 

The first stage of convolutions in the CNN model consists of two layers, each comprising 32 filters 

having 3×3 kernels and the ReLU function is used. They are made to pick up both space-related and spectral 

details in the input such as relationships between subcarrier frequencies and channel-induced distortions in 

the data. As a result of introducing ReLU, the network can model effectively the complicated nonlinear 

patterns common in MIMO-OFDM systems. When convolutional layers are done, a max-pooling layer 

compresses the feature maps which reduces space, highlights the most important features and makes the 

training process more efficient. With this structure, the model memorizes the main details needed which 

strengthens its performance with changes in the reception environment. 

 

Fully Connected Layers 

After convolutions and pooling, the feature maps are flattened into a single vector and go through 

two fully connected (dense) layers for further feature processing. The first densely-connected layer has 128 

neurons and the second layer contains 64 neurons and both layers add non-linearity by using the ReLU 

function to increase how much the model can learn from complex data. Because of these dense layers, the 

network can learn abstract rules and connections that shape the wireless channel. With hierarchical 

processing, the model manages a wider variety of channel conditions and increases its accuracy in figuring 

out the underlying channel signals. 

 

Output Layer and Reshaping 

Layers 8 and 9 of the CNN output 256 values that represent both the real and imaginary parts of all 

64 complex-valued coefficients found through all antenna paths in the 2×2 MIMO system. Every subcarrier 

in the OFDM system supplies four channel gains that account for the channel between different antennas, 

allowing a total picture of the transmission channel across all frequencies. These values are arranged into a 

tensor of shapes [64 × 2 × 2] using a process called ‘reshaping,’ where again 64 is for the number of 

subcarriers and 2×2 represents MIMO in terms of transmitting and receiving antennas. After reshaping, the 

signal is in the form of the physical wireless channel which allows it to be processed smoothly by channel 

equalization, demodulation and decoding. Because the model saves the spatial and frequency-domain 

structure, channel information is not only understandable but can be used directly in ordinary MIMO-OFDM 

receivers. 

 

 
 

Figure 3. CNN model architecture block diagram 
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Table 1. CNN layer configuration 

Layer Type Configuration Activation Output Shape 

Input [64 × 4] – [64 × 4] 

Conv Layer 1 32 filters, 3×1 kernel ReLU [62 × 32] (approx.) 

Conv Layer 2 32 filters, 3×1 kernel ReLU [60 × 32] (approx.) 

Max Pooling Pool size = 2 – [30 × 32] (approx.) 

Flatten – – [960] 

Dense Layer 1 128 neurons ReLU [128] 

Dense Layer 2 64 neurons ReLU [64] 

Output Layer 256 values Linear [256] 

Reshape – – [64 × 2 × 2] 

 

3.3. Training Configuration 
In order to train the deep learning model for accurate channel estimation in MIMO-OFDM systems, 

the loss function chosen was Mean Squared Error (MSE). In channel estimation which is a regression task, 

MSE helps find the channel matrix with the lowest misfit to the predicted values. Because it gives greater 

penalties for bigger deviations, MSE motivates the model to precisely predict the real and imaginary parts of 

the channel. This metric was used to check the model’s performance during both the training and validation 

steps, so the model kept improving and generalizing. 

Because of its adaptive learning and its ease with sparse gradients, Adam was the optimizer applied 

for optimization. Adam uses good features from both AdaGrad and RMSProp which allows it to be both 

robust and converge at a fast rate in deep learning tasks. The learning rate in the program was set to 0.001 by 

trial and error to lower the chance of sudden changes and help learning become stable. An overly high 

learning rate can push the loss beyond the minimum and a learning rate that is too low can cause the learning 

algorithm to converge very slowly. For a period of 100 epochs, the network was trained so it could pick up 

useful information from the data and had a low risk of overfitting. 

A batch size of 256 was chosen during training, giving the best balance between how fast the 

training completed and how unstable the gradients were. Improving the ability of the model to generalize, 

Dropout and Batch Normalization methods were applied. Every time the network trained, 30% of the neurons 

in the fully connected layers were switched to inactive status to stop the model from depending too much on 

any one feature. Batch Normalization was also used following the convolutional layers to stabilize the 

network by normalizing what was outputted from the previous layer. It makes the process faster and also 

makes the model less sensitive to initial weights. Because of these configurations, the training process is 

steady and the final model can work accurately in different types of signals. 

 

Table 2. Training configuration and hyper parameters 

Parameter Value / Description 

Loss Function Mean Squared Error (MSE) 

Optimizer Adam 

Initial Learning Rate 0.001 

Number of Epochs 100 

Batch Size 256 

Dropout Rate 0.3 (applied in dense layers) 

Batch Normalization After convolutional layers 

Regularization Dropout + Batch Normalization 

Model Evaluation Metric MSE (on training and validation sets) 
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Figure 4. MSE vs. Epochs line graph (Training vs. Validation) 

 

 

4. SYSTEM MODEL 

We consider a MIMO-OFDM system with    transmit and    receive antennas. The received signal 

in the frequency domain can be expressed as: 

       
Where: 

   : received signal matrix 

   : channel matrix 

   : transmitted signal matrix 

   : additive white Gaussian noise 

The goal is to estimate   using deep learning techniques given   and  . 

 

 

5. RESULTS AND DISCUSSION 

For evaluating the suggested deep learning-based channel estimation model, Mean Square Error 

(MSE) and Bit Error Rate (BER) were the main metrics applied. MSE computes how close the predicted 

channel matrix is to the actual one by computing the average squared error. Lower MSE confirms that the 

estimation is improved, most especially in tough fading environments. On the other side, BER looks at 

channel estimation’s impact on performance by counting how many bits were decoded incorrectly out of all 

the bits that were sent. This is important since wrong estimates, even a little bit, could badly affect how the 

receiving area decodes the signal, mostly when the situation is noisy or involves movement. 

When SNR is low (less than 10 dB), classical techniques have a hard time detecting signals, but the 

CNN-based model outperforms them. The sensitivity of LS and MMSE to noise and their need for previous 

statistical samples made their MSE and BER figures higher in these conditions. Instead, the CNN model built 

solid representations while training and so could give reliable estimates even with noisy inputs. As compared 

to traditional approaches, the model was able to maintain a low BER and deliver significantly lower MSE 

which suggests better signal fidelity during adverse conditions. 

The model also performed very well in high-mobility situations when the Doppler shift went above 

50 Hz. Because of these assumptions, the performance of traditional estimators such as LS and MMSE 

decreased sharply in such situations. CNN was able to adjust to fast-changing channel conditions because it 

could learn from the data about the environment. Also, the model was able to perform well in different 

channel models like Rayleigh and Rician fading, even though these were not covered by the training data. 

Thus, the model can handle a variety of wireless environments which makes it suitable for future mobile 

communication systems. 
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Table 3. Comparative Analysis 

Method MSE (SNR = 10 dB) BER (SNR = 10 dB) 

LS 0.0212 8.3% 

MMSE 0.0118 5.1% 

Proposed CNN 0.0067 2.9% 

 

 

 

 
 

Figure 5. MSE vs SNR comparison 

 

 
 

Figure 6. BER vs SNR comparison 

 

 

6. CONCLUSION 
We introduced a deep learning-based method that makes use of Convolutional Neural Networks 

(CNNs) to estimate channels in MIMO-OFDM systems. We realized that methods such as Least Squares 

(LS) and Minimum Mean Square Error (MMSE) do not work best in dynamic channel conditions, so we 

suggested a data-driven model that directly captures the structure of complex, nonlinear signals from raw 

data. Careful planning of the model’s structure let it handle accuracy, computational load and be reusable, 

making it suitable for deployment in advanced receiver devices. From our tests, we found that CNN-based 

estimator achieves much better results than traditional ones, as seen by measurements of Mean Square Error 

(MSE) and Bit Error Rate (BER). The model gave strong results in low SNR situations, scenarios of high 

mobility and different channel types such as Rayleigh and Rician. Another advantage is that deep learning 

can help in practical wireless networks, since assumptions made by conventional models tend to break down. 

In addition, because our architecture is so lightweight, it makes our model suitable for wireless 

communication equipment of the future. The use of deep learning in the future will make receivers for 

wireless standards like 6G and others better at adapting to different situations. Further studies could include 
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temporal models (e.g., LSTM, Transformer) to study changing dynamics in channels, use transfer learning to 

make the system more flexible for various environments and add hardware parts for real-time inference. All 

in all, the research supports the role of deep learning in shifting classic signal processing approaches and 

giving a firm basis for technological improvements in the field of wireless communications. 
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