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Automating and controlling systems in energy, water supply, transportation 

and manufacturing now greatly relies on Industrial Control Networks (ICNs). 

As OT and IT systems merge with the help of ICNs, these networks are now 

both more integrated and smart. However, this introduces more cybersecurity 

risks as they become exposed to more dangers. Because they are not 

dynamic, do not use signatures or only react to threats such traditional 

cybersecurity methods do not fulfill all the standards required by ICNs. This 

text focuses on presenting an AICF which works to defend ICNs from 

evolving cyber risks. The suggested approach combines machine learning 

(ML) with deep learning (DL) to set up various levels of defense. It features 

anomaly detection in real time by using unsupervised models, thoroughly 

sorts threats using deep neural networks and performs tasks automatically to 

prevent them by using reinforcement learning. Standard datasets created for 

the industrial domain such as SWaT and NSL-KDD are used to check the 

effectiveness of the framework. It is shown by experiment that AICF has a 

strong ability to detect threats, lessens false positives and identifies and 

controls threats swiftly with little impact on operations. The use of AICF has 

special value in catching zero-day attacks, moves across the network and 

clandestine actions that other systems may not spot. Besides, the ability to 

grow and change according to specific needs means the system is suitable for 

any industrial environment and protocols. All in all, the study highlights how 

AI methods can strengthen the strength, dependability and thoughtfulness of 

cybersecurity in ICN systems, allowing industrial automation to become 

safer and more reliable when facing new threats. 
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1. INTRODUCTION 

Industrial Control Networks or ICNs, are important for enabling automation, supervision and control 

of complicated actions in energy, water, manufacturing, oil and gas and transportation. In ICNs, you have 

Supervisory Control and Data Acquisition (SCADA) systems, Programmative Logic Controllers (PLCs) and 

Distributed Control Systems (DCS), all operating with physical components to guarantee stable, secure and 

efficient operations. Usually such networks were independent and not shared, placing greater importance on 

being reliable, working in a predictable way and being able to handle faults. Because of the rise of 

digitization, remote monitoring and IIoT, ICNs are now more likely to face cyber threats than in the past. 

Consequences of this change include the fact that ICNs are now exposed to many more 

cyberattacks, including both standard and advanced ones. Such noteworthy attacks as the Stuxnet worm on 

Iran’s nuclear centrifuges and the Triton malware against industrial safety systems stress the major risks that 
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cyber crimes pose for industries. It was made clear that adversaries can damage or disrupt core infrastructure 

by attacking old technology, insecure network parts and systems not being closely watched. Besides, since 

industrial systems are both complicated and diverse, usual IT security processes cannot work well in ICNs. 

Many times, signature-based IDS systems, rule-based firewalls and protection systems around the edge of the 

network are unable to detect advanced and silent attacks meant for industrial settings. 

 

 
 

Figure 1. Overview of Industrial Control Networks and the Proposed AI-Driven Cybersecurity Framework 

 

Since security measures that remain constant and react to threats are not enough, an increasing 

number of cybersecurity experts are suggesting the need for smart solutions that respond to dangers 

proactively. This paper attempts to solve the identified gap by suggesting an AI-based Cybersecurity 

Framework (AICF) that makes use of advanced machine learning and deep learning approaches to quickly 

and accurately identify and respond to threats in ICNs. This system, in comparison to older systems, has the 

ability to learn from what has occurred before and what is happening currently, identify suspicious actions, 

classify dangers with high precision and apply mitigation methods on its own. The framework includes 

anomaly detection on data from several sensors, high-precision classification of threats with deep neural 

networks and machine learning for managing security policies in unclear situations. 

The main goal of the new framework is to increase the security of ICNs without making them take 

on additional operating problems such as strict timings, limited computing power and high availability 

demands. AICF’s use of AI and knowledge from specific industries allows it to be adjusted as needs and 

security risks change in different industrial environments. With the help of actual datasets like SWaT and 

NSL-KDD, the research reveals that AI-based techniques are much better than traditional methods at 

detecting attacks, minimizing false alerts and acting quickly which helps make industrial systems safer and 

smarter as digital evolution advances. 

 

 

2. LITERATURE REVIEW 
It suggests a proper way to tackle the rising threats in industrial networks by introducing an 

Artificial Intelligence-based Cybersecurity Framework (AICF). The work clearly highlights how the unique 

activities and risks found in industrial areas, especially those linked to SCADA, PLC and DCS systems, are 

handled. The study explains that many traditional ways to protect networks are not enough, so it promotes 

using advanced, flexible and swift solutions. 

The most important point about this research is its full use of Machine Learning (ML) and Deep 

Learning (DL) technologies to identify anomalies, classify threats and respond independently. The 

framework is both a theoretical model and has been checked using popular industrial cybersecurity datasets 

such as SWaT and NSL-KDD. The rigorous experiments used during the research give more strength to the 

study’s results and underline the usefulness of the AICF model in practice. The results prove that AI-based 

approaches improve detection, shorten the response time and reduce false alarms much better than traditional 

methods, making them a good choice for critical infrastructure safety. 

Besides, this study shares an adaptable framework that is useful in any industrial environment facing 

new risks. With reinforcement learning, autonomous response can be implemented, requiring little help from 
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people to manage potential threats. The fact that the framework is suitable for real-time use in real businesses 

and is applied in research increases its importance to both schools and industries. 

All in all, this study managed to align the progress of AI with the important need for cybersecurity 

in ICNs. The results of this work boost both the understanding of AI in industrial security and the road 

towards its use in mission-critical operations. 

 

 

3. METHODOLOGY 

The framework would use several layers to gather information, process it, find anomalies, sort 

threats and respond quickly. 

 

3.1. Data Collection and Pre-processing  

To guarantee the robustness and effectiveness of the AICF, the investigation uses Secure Water 

Treatment (SWaT) and NSL-KDD datasets that encompass both cyber-attacks on ICSs and standard 

network-intrusion monitoring. Having two datasets widen the usefulness and general applicability of the 

framework everywhere. 

SWaT dataset is created from data gathered at an actual water treatment testbed built in a smaller 

scale. It reproduces how a water treatment plant works and has access to time-series information from 

instruments like flow meters, pressure sensors and chemical dosing signals, as well as the status of valves and 

pumps. Because the dataset holds real data as well as different kinds of attacks (such as replay, injection and 

spoofing), it is perfect for examining anomaly detection and learning models for ICNs. Since the data has a 

sequence, it makes sequential modeling possible and allows LSTM networks to be used. 

Another dataset to mention is NSL-KDD which is a more advanced version of the known KDD Cup 

1999 dataset. NSL-KDD deals with challenges like having repeated records and unbalanced amounts of 

normal and abnormal data. It keeps detailed information about traffic on the network and organizes attacks 

into four groups: Denial-of-Service (DoS), Probing, User-to-Root (U2R) and Remote-to-Local (R2L). With 

the dataset, various kinds of attacks can be tested for accuracy which is great for creating supervised machine 

learning models aimed at detecting all types of threats. 

In order to better train and use the datasets, a methodical data preprocessing process was used. 

 Normalization: Numerical features such as sensor readings, packet sizes, and timing intervals were 

normalized using Min-Max scaling. This process maps the data into a standard range (typically [0, 

1]), ensuring uniform contribution of all features during gradient descent and preventing features 

with larger magnitudes from skewing the model. 

 Feature Selection and Extraction: Key features relevant to threat detection were extracted. For 

SWaT, this included sensor-actuator relationships and timing patterns. For NSL-KDD, selected 

attributes included protocol type, service, flag, source and destination IPs, duration, and connection 

rates. Irrelevant or redundant features were removed to reduce noise and improve computational 

efficiency. 

 Label Encoding: For supervised learning models, categorical labels indicating normal or attack 

types were converted into numerical format using label encoding. This transformation enables 

algorithms like neural networks and decision trees to interpret class distinctions effectively. 

 Sliding Window Technique: For time-series-based models (e.g., LSTM), the sequential data from 

SWaT was segmented into fixed-size overlapping windows. Each window represents a structured 

input sample capturing temporal dependencies and patterns that precede an anomaly or attack. This 

was crucial for temporal anomaly detection and for maintaining contextual flow across sensor 

inputs. 
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Figure 2. Feature Distribution Before and After Min-Max Normalization 

 

Performing the preprocessing precisely gave the data used in machine and deep learning models a 

high level of quality and standardization. By doing this, the process improved the model’s results and 

increased the accuracy of detecting different activities in the industry and network. Because of this, data 

preparation played a key role in making the AICF development and evaluation successful. 

 

Table 1. Comparison of SWaT and NSL-KDD Datasets Used for Cybersecurity Model Evaluation 

Feature SWaT Dataset NSL-KDD Dataset 

Domain Industrial Control System (ICS) Network Intrusion Detection 

Type Time-Series Sensor and Actuator Data Structured Network Traffic Records 

Attack Types Sensor spoofing, replay, DoS, etc. DoS, Probe, U2R, R2L 

Data Format CSV with Timestamps Structured CSV 

Label Type Binary (normal/attack) Multi-class (4 attack categories) 

Sample Size ~946,000 records ~125,973 records (train + test) 

Application Use Anomaly detection Attack classification 

 

3.2. Anomaly Detection Module  
The Anomaly Detection Module is an important aspect of developing the AICF for ICNs. It detects 

the initial signs of possible threats by always watching how the system operates and noticing deviations. For 

security in ICNs, you cannot miss detection of the tiniest threats such as zero-day attacks, offenses by 

insiders or stealthy break-ins to prevent any damage, service loss or data compromise. It is hard to address 

ICN security because there are not many labeled examples of cyber attacks in real ICN networks. The main 

method used by the anomaly detection module is unsupervised learning because it does not depend on data 

labels. They can tell apart normal from abnormal behavior depending on differences in their data which is 

very helpful for fast and varied ICN networks. 

An important approach used is the Autoencoder which is a deep network made for recreating the 

input data. Since the Autoencoder is trained with just typical data from normal operation, it can find out the 

regular patterns and relationships among sensor values, actuator states and command sequences. During 

inference, unusual inputs that can’t be fit into the learning structure (because they produce high error) are 
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marked as anomalous. The approach helps a lot in ICNs, as the regularity of operations allows issues like 

misconfigurations or cyberattacks to show up when reconstruction fails. Moreover, the module uses the 

Isolation Forest algorithm, a type of tree-based ensemble model that does well in catching anomalies by 

separating them from the main data points. It does this by splitting data over and over again using random 

features and picking those points that need the least number of partitions to be on their own. When we look at 

these points, we suspect that they are unusual cases. The method uses little computing power and does not 

depend on any special data distribution which makes it suitable for live use in ICN environments with 

restricted resources. 

 
 

Figure 3. Anomaly Detection Workflow Integrating Autoencoder and Isolation Forest Models in the 

Proposed Cybersecurity Framework 

 

Because Autoencoders and Isolation Forests are used together, the system is helped by both learning 

from data and recognizing patterns to isolate attacks. As a result, the system will be able to uncover different 

sorts of problems, whether they come on quietly or all at once. As a result, the framework can handle more 

threats and this rule reduces both the risk of mistakes and missing something important. 

Overall, the anomaly detection module greatly improves how secure Industrial Control Networks 

(ICNs) are by finding and alerting about unusual activity almost immediately. Due to its use of Autoencoders 

and Isolation Forests, the module finds both traditional and zero-day attacks even when data labels are not 

widely available. The fact that it is lightweight and explains its operations well means real-time reporting, a 

must for environments that don’t have much time or resources. Because the system can be divided into 

modules, it can be used with varying types of industries and meet many needs. It enables ICNs to notice 

changes in the network quickly and deal with both traditional and new cyber attacks by protecting their 

critical infrastructure. 

 

3.3. Threat Classification Module  

When the Anomaly Detection Module marks parts of the ICN data as unusual, the Threat 

Classification Module checks what type of threat each anomaly might be. Although anomaly detection 

highlights something is wrong, classification tells us the nature of the threat such as a Denial-of-Service 

(DoS) attack, a probe, an insider manipulation or a user-to-root (U2R) escalation. This layer supports quick 

and wise actions needed in industrial settings, where missing or late detections may result in problems, 

dangers or a loss of money. 

To ensure the process of identifying threats is accurate and efficient, there are many supervised 

learning models in the framework, each designed to spot a particular type of data pattern or behavior. One of 

the main models found in computer vision is the Convolutional Neural Network (CNN). These networks 

were born for image analysis and still perfectly detect patterns that exist throughout data sets that have a 

structure. In this field, while analyzing ICS traffic, CNNs spot unique patterns that relate to a certain type of 
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attack. Thanks to their structured feature extraction techniques such tools can detect deceptive or subtle threat 

behaviors in complex mixes of data. 

 

 
 

Figure 4. Threat Classification Architecture Integrating CNN, LSTM, and Random Forest Models for Multi-

Class Attack Identification 

 

CNNs are enhanced by adding Long Short-Term Memory (LSTM) networks from the Recurrent 

Neural Networks (RNN) family which are well suited for data that follows a sequence. LSTMs are helpful in 

ICNs since they can handle situations where attacks develop gradually and are related in time, as in the cases 

of slow-moving intrusions or attacks by insiders. The use of LSTMs allows the system to tell apart small 

changes in systems from serious problems with great accuracy. 

Besides, using Random Forest (RF) classifiers within the framework increases how well and fast the 

algorithms interpret and execute. Using decision trees, RF is known for being reliable in working with data 

that has many variables and contains high levels of noise. It serves customers well with multi-class 

classification work because it also provides helpful insight on feature rankings used in analysis. In resource-

limited places where powerful deep learning models are not practical, RF is most useful because it does not 

use much memory. 

Since CNN, LSTM and RF models look at data from different angles, the system is able to 

accurately recognize various kinds of cyber threats. This approach to classification is very important because 

it reduces false positives, increases the chances of pinpointing real threats and supports the use of automation 

to handle threats. After detecting the threats, the system can address them with measures like blocking an IP, 

putting a PLC in isolation or getting security staff involved. 

In brief, by turning raw anomalies into useful and effective intelligence, the Threat Classification 

Module raises situational awareness, speeds up reaction and strengthens the cybersecurity process in critical 

infrastructure. 
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Figure 5. Model Accuracy Comparison across Different Attack Classes 

 

3.4. Autonomous Response System  
This proposed system works as the most flexible and last level in the AI-driven cybersecurity 

architecture for Industrial Control Networks (ICNs). It is mainly responsible for applying Threat 

Classification Module findings directly in secure actions, so detection and mitigation go hand in hand. The 

intention is for this system to interact within its parameters on its own, while guaranteeing that workers are 

kept safe and there is no loss of situation control, because even the shortest stoppages or delays in action in 

an industrial area could cause big losses and danger. 

Once the threat classifier sends its results, the system starts by generating alerts automatically. Such 

notifications are directed to people in charge of handling security and they feature details such as the kind of 

attack (e.g., DoS, R2L, U2R) which device or network zone was involved, the moment it was seen and the 

anticipated trust of the computer prediction. As a result, security teams are aware of risks right away and can 

decide what to do first depending on the situation. So, an urgent reaction to a high-confidence attempt to 

become a privileged user on a PLC may be needed, in contrast to a standard reaction for a low-confidence 

test in a different, less critical part of the system. 

 

 
Figure 6. Autonomous Response System Workflow from Threat Classification to Real-Time Mitigation in 

Industrial Control Networks 
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In addition to human alerting, the core strength of this system lies in its ability to initiate automated 

threat mitigation. Drawing on a library of predefined security policies and real-time threat intelligence, the 

system can autonomously execute containment and response actions. These may include: 

 Blocking suspicious IP addresses or disabling specific network ports, 

 Reconfiguring firewall or intrusion prevention system (IPS) rules, 

 Isolating compromised devices or subnetworks from the rest of the ICN, 

 Rate-limiting or terminating suspicious communication sessions, 

 Activating backup operational modes or fail-safe mechanisms in critical infrastructure systems. 

Such actions are directed by a policy engine that decides the best steps to take by using rule-based or 

artificial intelligence logics. The engine makes sure to respond firmly to bad actors on the ICN and still 

supports the operations that require it. What’s more, feedback loops can be included in the policy engine, so 

the response system is able to adjust its strategies in response to past incidents by learning or with the help of 

experts. 

Because of its abilities to detect problems early and act independently, the system stays strong in the 

face of unknown threats. Should there be simultaneous attacks, the network can be segmented immediately to 

stop the spread of threats, since this is a common approach of APTs and ransomware. To sum up, the system 

quickly makes defensive responses based on the intelligence it receives, quickly responding to threats that 

would take precious hours to notice. Since it offers quick reactions, flexible policy decisions and clear 

supervision, this module significantly protects the stability and safety of interconnection networks even in 

real-life situations. 

 

 

4. RESULTS AND DISCUSSION  

It was proven in experiments that the AICF effectively enhances the detection, classification and 

response to cyber threats on Industrial Control Networks (ICNs). AICF showed better performance results 

than previous methods such as SWaT and NSL-KDD. Specifically, its accuracy reached 98.1%, whereas the 

false positive rate (FPR) was no more than 2.1%. Unlike cNNs, LSTMs and classic Random Forests, it 

achieved much better results and managed to handle different attack types consistently, especially complex 

and shifting threats. 

It is the layered architecture of AICF that aligns Autoencoder, Isolation Forest and traditional 

models with classification capabilities, all of which allow it to make positive decisions without input from a 

person. Working on just one kind of attack such as LSTM for time-series data or CNN for patterns in space, 

did not completely solve the complexities of cyber threats in ICNs. Because of having a hybrid learning 

pipeline, the AICF can discover and categorize problems early which helps it react to them in the appropriate 

context. 

Also, the system includes an RL-based response agent that helps it learn from things it has 

experienced and refine its actions based on its own feedback. The adaptability offered by AI is important 

nowadays in industry, as risks from hackers always change and traditional defenses can be surpassed. 

Even though AICF has produced positive results, several things about it should not be ignored. LUA 

is mainly concerned about the lack of interpretability in models such as LSTM and autoencoders. Because 

their choices are not easily explained, human operators find it hard to know if they can trust or recognize how 

such systems operate during important missions. Sometimes, this problem results in challenges related to 

compliance in safety-regulated industries. The need for labeled training data for supervised parts is well 

known, but people may not be able to collect such data because it’s hard or inappropriate. If labels are 

incorrect, the model may start to drift and there can be more chances for false alarms or things being missed. 

Besides, linking the distributed framework with legacy ICS protocols such as Modbus, DNP3 or PROFIBUS 

gave rise to practical problems. A lot of these protocols lack proper organization of data or standard 

communication which often means creating new parsing, preprocessing or abstraction layers to use them in 

real-world situations. 
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Figure 7. Performance Comparison of Cybersecurity Models in ICNs 

 

Therefore, the next editions of AICF ought to include XAI techniques to ensure decision-making 

clarity, grow operators’ confidence and help with compliance with regulations. In a similar manner, using 

semi-supervised or self-supervised learning can help use less data and make AI systems work better in 

factories with less data. All in all, the data collected during the experiment proves that AICF is a reliable, 

intelligent and flexible defense system for ICNs, showing better performance and ability to handle changes 

compared to other models. Significant limits of the framework can be addressed by updating the system and 

doing more research, showing that AICF is a solid base for future cybersecurity systems in industries. 

 

Table 2. Comparative Performance, Strengths, and Limitations of Cybersecurity Models for Industrial 

Control Networks 

Model Accuracy (%) False Positive 

Rate (%) 

Strengths Limitations 

Random Forest 89 7 Fast, 

interpretable 

Lower accuracy, 

limited 

adaptability 

CNN 91 6 Good for spatial 

patterns 

Limited temporal 

insight 

LSTM 94 4.5 Captures 

temporal 

sequences 

Black-box, 

requires sequence 

data 

AE+LSTM 96 3 Combines 

spatial + 

temporal 

features 

Still lacks 

autonomous 

response 

AICF 98.1 2.1 Full pipeline + 

adaptive 

response 

Explainability, 

integration with 

legacy protocols 

 

 

5. CONCLUSION 
The framework introduced in this study is strong, flexible and equipped to fight rising and advanced 

cyber threats aimed at critical infrastructure’s Industrial Control Networks (ICNs). The framework uses 

unsupervised learning to spot issues, explores deep learning to correctly identify several types of threats and 

responds automatically based on assigned policies to provide complete protection. Tests on benchmark 

datasets like SWaT and NSL-KDD show that AICF improves detection accuracy, has less false alarms and is 

more responsive than traditional methods, reaching a maximum accuracy of 98.1% and a minimum false 

positive rate of 2.1%. Because AICF is built in layers, it records threat patterns based on location, time and 

actions, helping it spot and control threats, old or new, as soon as possible. Even though model understand 

ability, dependence on labeled data and working with old protocols are still issues, they can be solved by 

using explainable AI (XAI), semi-supervised learning and eliminating protocol dependence. Overall, AICF 

brings about an important change from routine and reactive techniques to more active and intelligent defense 
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solutions which makes it ideal for guarding the systems of the future. The next steps will be to strengthen 

how these systems are scalable, run in various areas and resist manipulation to support safer and more 

efficient operations in industries. 
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