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 Increased use of renewables makes good load forecasting crucial to 

the more efficient running of microgrids, and to the proper 

management of their energy. The conventional methods of prediction 

are not typically capable of dealing with the highly non-linear, 

stochastic and time-varying dynamics commonly observed in modern 

microgrid systems. During the last several years, reinforcement 

learning (RL) has started to be preferred due to its capabilities of 

assisting systems to progress independently and follow the best 

learning patterns depending on their real-world experiences. In this 

review, a large number of RL-based load forecasting approaches 

applied in microgrid environments are considered. The method is 

used to arrange past research according to forecasting horizon, the 

kind of algorithms employed, character of the information and 

judgment basis of outcome. Their efficiency and drawbacks in terms 

of real-time forecasting assignments are compared in terms of Q-

learning, Deep Q-Networks (DQN), Proximal Policy Optimization 

(PPO) and Actor-Critic. Hybrid models, computation problems and 

challenges of merging IoT and edge computing layouts are also 

examined by the authors. It talks about the fields in which the recent 

research has been lacking and outlines how to proceed, naming 

federated learning, multi-agent reinforcement learning and the 

standardization of datasets as requirements. This work aims at 

demonstrating to the research and developer communities how they 

can deploy solid RL techniques to achieve smart, scalable and 

reliable microgrid load forecasting. 
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1. INTRODUCTION 

The integration of additional renewables, electric vehicles and DER is transforming the 

way power systems are operated, primarily within the microgrid environments. Accurate and timely 

demand forecasting is the main ingredient in stable supply, optimal utilization of system resources 

and demand management cost-efficiency. Over the last several years, statistical methods, such as 

ARIMA, exponential smoothing and multiple linear regression have been relied upon to perform 

power system load forecasting [1]. Such models can perform adequately under simple, regular 

conditions, but they tend to fail at capturing the complex, uncertain and stochastic behaviour of 
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energy demand in microgrids when weather-dependent renewable generation, fluctuating demand 

and user behaviour are in play. 

With the implementation of machine learning tools beginning in the last ten years, 

specifically the use of models like SVR [2], ANNs and LSTM networks, predictions are now more 

accurate due to the data collected through information. These methods, nonetheless, require an 

unchanging environment or load to perform best and will have to be retrained in the case of 

changes. Hence, scientists have been experimenting with techniques that are adaptive and self-

learning and reinforcement learning (RL) has been shining in this territory. 

Other systems are highly dynamic and reinforcement learning lets agents adapt to such 

dynamic systems through feedback in their course of action. In addition to the fact that labeled data 

is not needed, RL is a perfect choice to predict the loads in microgrids as it is capable of assuming 

fast, challenging decisions when data is uncertain [3]. Recent studies demonstrated that Q-learning, 

Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO) could assist in making the 

forecasts more flexible, minimize prediction error and enable energy-efficient scheduling in smart 

grids. 

Nevertheless, certain issues exist. A number of RL-based models are incapable of dealing 

with different microgrid configurations and struggle to do so because they lack data, are unstable to 

converge and have high computational requirements. Consequently, researchers need to develop 

architectures that cluster RL with edge computing, federated learning and multi-agent systems to 

offer secure and scalable prediction options. 

In this paper, types of reinforcement learning have been discussed in anticipation of 

microgrid loads to bridge gaps in knowledge. We meticulously study accessible algorithms, their 

system configurations, the mode of operation and the ease of deployment. It also identifies the 

major research gaps and recommends how to develop robust, intelligent and short-term prediction 

techniques of future microgrids. Load forecasting evolution in microgrids is illustrated in Figure 1. 

 

Figure 1. Load Forecasting Evolution in Microgrids: Traditional to RL Approaches 
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2. BACKGROUND 

2.1 Microgrid Structure and Load Forecasting Needs 

They are small systems that integrate such things as DERs, energy storage and controllable 

equipment to serve a local area [4]. They can operate grid-tied or off-grid that provides them with 

flexibility, good performance and capability of producing their own energy. Major components of a 

microgrid include a solar or wind power machine, a diesel or gas-powered generator, battery pack, 

smart meter and an EMS to direct the interaction between them. 

One primary reason why a microgrid is important is that it can maintain constant balance 

between the produced energy and the consumed energy. This is why power demand forecasting is 

required since it determines how power is distributed [5], how batteries are charged and discharged, 

and how customers react to the energy market change. Due to the potential volatility of renewable 

energy and unpredictable needs of the consumers in microgrids, the demand of the power becomes 

more significant and challenging to forecast. 

2.2 Classification of Forecasting Horizons 

Short-term, intermediate-term and long-term forecasting are referred to as load forecasting 

and each type has its purpose in terms of value to operations and planning. 

STLF is a technique of extrapolating electrical load over several minutes to hours. 

Primarily it is used to make run decisions such as which generators to turn on, how to instruct 

energy usage and when to charge or discharge batteries. In MTLF, the requirement of swift and 

precise data is quite essential. In this level, its primary applications are in the scheduling of 

maintenance, bidding of electricity and fuel purchase timing. In the case of LTLF, we consider the 

timeframe of months to years because it is applied in the development of new infrastructure, 

establishment of laws and expansion of supply. So trends and scenarios are significant to STLF as 

it is highly involved in microgrid systems that direct daily operations and are a main factor in grid 

stability [6]. 

2.3 Key Performance Metrics in Load Forecasting 

The usefulness of the forecasting models depends on checking the accuracy of the 

predictions they give. The literature contains many articles that employ various measures of 

performance to determine the accuracy of forecasts. 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |
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× 100                              (1) 

It expresses the average error as a percentage of actual values and is widely used due to its 

interpretability. However, it can be biased when actual values are near zero. 

Root Mean Square Error (RMSE): 

RMSE penalizes large errors more than smaller ones and is suitable when larger 

forecasting errors are particularly undesirable. 
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Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐴𝑡 − 𝐹𝑡|

𝑛

𝑡=1

                                        (3) 

MAE provides an absolute measure of average forecast error and is less sensitive to 

outliers than RMSE. 

R-squared (R²): quantifies the ratio of the variance in the observed load that is predicted by the 

model. It is commonly employed together with measures of error in assessing the overall goodness-

of-fit. 

In the case of reinforcement learning based load forecasting these are the metrics either 

used to train objectively or to measure following training [7]. The optimal forecasting model to be 

utilized together with microgrids must not alone be precise in its forecasts but also respond rapidly 

to rapid changes and support critical operational decisions. Figure 2 represents the reinforcement 

learning-enabled load forecasting and control framework in a microgrid. 

 

 

Figure 2. Reinforcement Learning-Enabled Load Forecasting and Control Framework in a 

Microgrid 

2.4 Reinforcement Learning: Concepts and Algorithms 

Such a learning approach is called Reinforcement Learning (RL) [8], which assists an 

independent system to make recurrent choices in a setting based on the rewards it receives. Reward 

Learning consists of four components: the agent, the environment, a reward signal and a policy. 

The agent constructs strategies such that the agent achieves the most benefit in the long run, most 

often by considering an MDP where the future state is only dependent on the present state and the 

action of the agent. RL can manage energy systems and foretell loads, unlike supervised learning 

that utilizes fixed data and needs to be re-trained each time the environment adjusts; RL can use its 

findings about the world. 
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Algorithms Reinforcement learning algorithms are currently finding application in energy 

demand prediction and the smart grid domain [9]. The selection of Q-Learning is very popular 

since the best actions are easy to learn. DQN Deep neural networks are utilized in DQN to assist 

the Q-learning to dealing with high-dimensional spaces, which is common in multivariate load 

prediction. Addressing the issue of overestimation in Q-learning, Double DQN furnishes the 

process of action selection and evaluation as separate.  

DDPG is a favorite choice since deterministic policy learns in continuous action spaces, 

which are prevalent in reinforcement learning with actor-critic architecture. PPO aims at 

encouragement of stability as well as great performance, achieved through clipping of the 

probability ratios during leaning. Actor-Critic models with A2C and A3C maintain the policy and 

value function in sync with each other and are able to adaptation in real-time scenarios [10]. 

Whereas other methods, such as SVMs or LSTMs, are fixed, RL algorithms can enhance 

themselves during interaction, which is why they are well suited to be used in microgrids which 

continuously vary. Figure 3 shows the independent illustrations of supervised learning and 

reinforcement learning paradigms.  

 

 

Figure 3. Independent Illustrations of Supervised Learning and Reinforcement Learning Paradigms 

 
Benefits of Applications and Algorithms for Reinforcement Learning 

 

 Capacity to Manage Nonlinear and Complex Systems 

Reinforcement learning algorithms are well suited for environments characterized by nonlinear, 

stochastic, and time-varying dynamics. Unlike traditional model-based or supervised learning 

approaches, RL does not require explicit system modeling, making it effective for complex real-

world applications such as microgrids, robotics, and autonomous systems. 

 Model-Free Learning Capability 

A major advantage of RL is its model-free nature, where optimal policies are learned directly 

through interaction with the environment. This is particularly beneficial in systems where accurate 
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mathematical models are difficult [11] or expensive to obtain, such as energy systems with 

renewable integration or dynamic consumer behavior. 

 Flexibility in Changing and Unpredictable Situations 

RL algorithms continuously learn and adapt based on real-time feedback [12]. This enables them to 

respond effectively to changes in system conditions, uncertainties, and disturbances, making RL 

suitable for applications involving fluctuating loads, renewable energy variability, and evolving 

operational constraints. 

 Sequential Decision-Making and Long-Term Optimization 

Unlike traditional optimization methods that focus on immediate outcomes, RL optimizes long-

term cumulative rewards. This characteristic makes RL ideal for sequential decision-making 

problems, such as energy management, load forecasting, traffic control, and resource allocation. 

 Deep Reinforcement Learning's Scalability 

The integration of deep neural networks with reinforcement learning (Deep RL) enables scalability 

to high-dimensional state and action spaces. Techniques such as Deep Q-Networks (DQN), 

Proximal Policy Optimization (PPO) [13], and Actor–Critic methods allow RL to handle complex 

sensory inputs and large-scale systems. 

 Decreased Reliance on Labeled Information 

RL does not require labeled datasets, unlike supervised learning methods. Instead, learning is 

guided by reward signals, reducing data labeling costs and enabling continuous online learning in 

real-world environments. 

 Capability to Make Decisions in Real Time 

Many RL algorithms can operate in near real time once trained, enabling fast and autonomous 

decision-making. This is critical for applications such as smart grids, autonomous vehicles, 

robotics, and industrial automation. 

 Adaptability in a Variety of Applications 

Reinforcement learning has been successfully applied across a wide range of domains, including 

smart grids, microgrids, robotics, healthcare, finance, transportation, and gaming. Its general-

purpose learning framework allows easy adaptation to different problem settings. 

 Combining Emerging Technologies 

RL can be effectively combined with emerging paradigms such as Internet of Things (IoT), edge 

computing, digital twins, and cyber-physical systems. This integration enhances intelligent 

decision-making in distributed and resource-constrained environments. 

 Assistance with Distributed and Multi-Agent Systems 

Multi-agent reinforcement learning (MARL) enables coordination and cooperation among multiple 

agents operating in decentralized systems. This is particularly beneficial for applications such as 

distributed energy management, swarm robotics, and networked control systems. 

 Sturdiness in the Face of Uncertainty and Noise 

RL algorithms learn optimal behaviors despite noisy measurements, incomplete information, and 

uncertain environments. This robustness improves reliability in real-world deployments. 

 Constant Improvement with Experience 
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RL systems improve performance over time as more interaction data become available. This 

lifelong learning capability allows systems to adapt to evolving environments and operational 

objectives. 

 Improved Decision Quality in Relation to Rule-Based Systems 

Compared to fixed rule-based or heuristic approaches, RL can discover more efficient and optimal 

strategies by exploring the environment and learning from outcomes, often outperforming 

traditional methods. 

 Enables Intelligence and Automation 

Reinforcement learning enables autonomous systems to operate with minimal human intervention, 

reducing operational complexity and enabling intelligent automation in complex systems. 

 

3. REVIEW OF RL ALGORITHMS FOR LOAD FORECASTING IN MICROGRIDS 

In microgrids, lately, there has been more effort to use reinforcement learning to load 

forecasting, owing to its proficiency in repeated choice modeling and responding to demand 

alterations. In this text, I explain the latest RL-based forecasting approaches displaying their 

algorithms and the way to utilize them, important metrics involved and their practical application in 

the real world. 

3.1 Categorization Based on RL Algorithm 

The study indicates that the two categories of RL algorithms are widely applicable in 

making predictions [14]. Q-learning and DQN are used by many people as they are easy and assist 

in discrete action problems. Instead, issues with continuous load prediction have led to measures 

such as adopting policy gradient methods and actor-critic models such as PPO, A2C and DDPG. 

These algorithms exhibit better behavior in scenarios when both the load and time are affected by 

other means. 

3.2 Model Architectures and Hybrid Frameworks 

Most of the researchers have developed DRL models through applying RL and neural 

networks that enables us to appreciate and utilize information in high-dimensional input data. 

Moreover, these models succeed in the forecast because they take into account the variation of load 

with time. One has the thought to combine RL with a supervised technique like SVR or ensemble 

technique so as to assist the system to use the exploratory policy approach and yet observe the 

distinction in the representing functions. 

3.3 Data Sources and Forecasting Scenarios 

The majority of the works reviewed use real-world data available on OpenEI, the UCI 

Machine Learning Repository or provided by utilities or operate with the data synthesized under 

the GridLAB-D or Simulink simulation conditions. The majority of the cases contemplate the 

short-term load forecasting (STLF) with a time step ranging between 15 minutes to 1 hour [15], 

which is required in real-time control and storage scheduling. There are also a few attempts to use 

RL in medium-term or multi-purpose forecasting problems, largely in the form of model predictive 

control. 

3.4 Evaluation Metrics and Performance Comparison 
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MAPE, RMSE and MAE are common performance assessment methods of RL-based 

forecasting models. In a number of situations, the RL-based techniques perform superior to the 

conventional methods, primarily where there are alterations in the load. Though they have benefits, 

the employments of the techniques in the resource constrained microgrid control system may be 

doubtful because they require more time and are more expensive during the training process. 

Following Table 1 presents the comparative analysis of RL algorithms.   

Table 1. Comparative Analysis of RL Algorithms for Load Forecasting in Microgrids 

Study RL 

Algorithm 

Forecasting 

Horizon 

Dataset Performance 

Metrics 

Key Findings 

Reinforcement 

Learning-Based 

Online Learning 

Strategy for 

Real-Time Load 

Forecasting 

Q-

Learning 

Short-Term Real-time 

meter data 

MAPE, 

RMSE 

Demonstrated 

improved 

adaptability in 

real-time 

forecasting 

scenarios. 

A Review on 

Short-Term Load 

Forecasting 

Models for 

Microgrid 

Various 

(including 

RL) 

Short-Term Diverse 

microgrid 

datasets 

MAPE, 

MAE, RMSE 

Provided a 

comprehensive 

comparison of 

models, 

highlighting 

the 

effectiveness 

of RL in 

certain 

contexts. 

Energy 

Forecasting: A 

Comprehensive 

Review of 

Techniques and 

Applications 

Deep Q-

Network 

(DQN) 

Short to 

Medium-

Term 

Thermal 

power unit 

data 

MAPE, 

RMSE, MAE 

CNN-LSTM-

A model 

outperformed 

conventional 

LSTM, 

indicating the 

potential of 

hybrid deep 

learning 

approaches. 

Short-Term Load 

Forecasting of 

Microgrid via 

Hybrid Support 

Vector 

Regression-Long 

Short-Term 

Memory 

SVR-

LSTM 

Hybrid 

Short-Term Rural 

microgrid 

in Africa 

Correlation 

Coefficient 

SVR-LSTM 

model 

achieved 

higher 

accuracy 

compared to 

individual 

SVR and 

LSTM 

models. 
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https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/tje2.12151
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https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/tje2.12151
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/tje2.12151
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https://www.mdpi.com/1996-1073/17/7/1662
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https://www.mdpi.com/1996-1073/17/7/1662
https://www.mdpi.com/1996-1073/17/7/1662
https://www.mdpi.com/2071-1050/12/17/7076
https://www.mdpi.com/2071-1050/12/17/7076
https://www.mdpi.com/2071-1050/12/17/7076
https://www.mdpi.com/2071-1050/12/17/7076
https://www.mdpi.com/2071-1050/12/17/7076
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Enhancing 

Microgrid 

Performance 

Prediction with 

Attention-Based 

Deep Learning 

Models 

Attention-

Based 

GRU 

Short-Term Micro-grid 

Tariff 

Assessment 

Tool 

dataset 

MAE, 

RMSE, R² 

Score 

Achieved 

MAE of 0.39, 

RMSE of 

0.28, and R² of 

98.89%, 

outperforming 

traditional ML 

models. 

Reinforcement 

Learning-Based 

Dynamic Model 

Selection for 

Short-Term Load 

Forecasting 

Q-

Learning 

Short-Term Two-year 

load and 

weather 

data 

Not specified Implemented a 

dynamic 

model 

selection 

approach, 

improving 

forecasting 

accuracy by 

approximately 

50% compared 

to state-of-the-

art ML 

models. 

Optimal 

Scheduling of 

Isolated [16] 

Microgrids 

Using 

Automated 

Reinforcement 

Learning-Based 

Multi-Period 

Forecasting 

Prioritized 

Experience 

Replay 

AutoRL 

Multi-

Period 

Simulated 

microgrid 

data 

Not specified Proposed a 

forecasting 

method 

addressing 

error 

accumulation 

in multi-step 

forecasting, 

leading to 

improved 

prediction 

accuracy and 

reduced 

operating 

costs. 

 

3.5 Comparative Summary of Reviewed Studies 

To facilitate the comprehension, readers frequently find it helpful when a short comparison 

of the major studies is provided. The following table contains the description of various 

representatives of literature that are different in the type of algorithm, dataset, the distance into the 

future a forecast has to be made, whether hybrid methods are used and what performance is 

achieved. The systematic methodology enables us to identify the trend in selecting algorithms and 

highlights which RL methods are compatible with some characteristics of microgrid load 

forecasting. 
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4. CHALLENGES AND LIMITATIONS 

Although RL may be quite effective in predicting smart loads in microgrids, the absence of 

decent data restricts its broad usage. In practical microgrids, data to carry out such optimizations is 

insufficient, fragmented or difficult to access in a uniform way. Deep reinforcement learning 

algorithms take powerful computers, a lot of memory and a lot of time to run. It poses challenges to 

microgrids that rely on low-power systems or minor computing locations. When the environment is 

non-stationary, these models may have difficulties in continuing to learn since the dynamic loads 

are continuously varying. However, extrapolation of the findings to unmeasured circumstances is 

yet to be achieved. RL models trained on particular datasets would exhibit an issue of new 

seasonal, demographic or geographic variations thus become inflexible. Such challenges have to be 

sorted out to have improved and flexible, reliable and instantaneous predictions in any network. 

 

5. FUTURE RESEARCH DIRECTIONS 

To bring the RL-based load forecasting in microgrids more realistic and scalable, several 

thrilling future investigations are emergent. 

With the use of transfer learning and federated reinforcement learning, the adaptation of 

models and preservation of privacy in data becomes less challenging. Transfer learning, or transfer 

RL, makes it simple to apply what has been learned in one microgrid setting to another without 

much retraining. The focus is to ensure that these models are efficient to the point that the forecast 

can be undertaken on time. This method is also promising as it allows MARL to facilitate 

intelligent load shifting and peak shaving, with the reminder of real-time updates of forecasts, 

prices and user preferences. The future of MARL requires the sharing of popular benchmarks and 

datasets, to ensure fair comparisons and speed up progress. One set of evaluation measures and 

assessment steps will allow us to appreciate future models in a more reasonable way. 

 

6. CONCLUSION 

We have provided the entire literature survey on the position of reinforcement learning 

(RL) algorithms in microgrid load forecasting. Due to the very complex and dynamic nature of 

energy systems, the research considers applying Reinforcement Learning instead of the typical 

statistical or supervised learning. As we have seen, RL-based models can deal with nonlinear loads, 

real-time prediction and environmental uncertainty, but are not yet used in large scale due to 

absence of required data, extreme system load, issues of stability and limited adaptability. 

Meanwhile, new concepts in forecasting are being promoted by transfer learning, federated 

reinforcement learning, lightweight models and multi-agent systems. 

The operation of microgrids will be based on RL operating alongside demand response, 

embedded systems and decentralized systems in order to become resilient, efficient and more 

intelligent. Any further studies should be based on a solid methodology that will rely on standard 

data and benchmarking strategies. An important advancement towards constructing intelligent, 

scalable and self-regulating forecasting systems required to promote sustainable energy in 

microgrids involves reinforcement learning. 

 

REFERENCES 

[1] She, B., Li, F., Cui, H., Zhang, J., & Bo, R. (2022). Fusion of model-free reinforcement 

learning with microgrid control: Review and vision. arXiv. https://arxiv.org/abs/2206.11398 

https://arxiv.org/abs/2206.11398


IIRJET                                                                                                             

Reinforcement Learning Approaches for Load Forecasting in Microgrids: A Comprehensive Review 

72 

[2] Yao, F., Zhao, W., Forshaw, M., & Song, Y. (2024). A holistic power optimization approach 

for microgrid control based on deep reinforcement learning. arXiv. 

https://arxiv.org/abs/2403.01013 

[3] Ghasemi, A., Shojaeighadikolaei, A., & Hashemi, M. (2023). Combating uncertainties in 

wind and distributed PV energy sources using integrated reinforcement learning and time-

series forecasting. arXiv. https://arxiv.org/abs/2302.14094 

[4] Yu, L., Qin, S., Zhang, M., Shen, C., Jiang, T., & Guan, X. (2020). A review of deep 

reinforcement learning for smart building energy management. arXiv. 

https://arxiv.org/abs/2008.05074 

[5] Agupugo, C. P., Tochukwu, M. F. C., &Ogunmoye, K. A. (2025). Review of smart microgrid 

platform integrating AI and deep reinforcement learning for sustainable energy management. 

International Journal of Future Engineering Innovations, 2(3), 1–17. 

https://www.researchgate.net/publication/391394132 

[6] Biswal, B., Deb, S., Datta, S., Ustun, T. S., & Cali, U. (2024). Review on smart grid load 

forecasting for smart energy management using machine learning and deep learning 

techniques. Energy Reports, 12, 3654–3670. https://doi.org/10.1016/j.egyr.2024.02.039 

[7] Ghosh, S., & Saha, H. (2020). Deep reinforcement learning for energy management in a 

microgrid. Sustainable Energy, Grids and Networks, 21, 100314. 

https://doi.org/10.1016/j.segan.2020.100314 

[8] Sahoo, S., & Mohanty, S. (2023). State-of-the-art review on energy and load forecasting in 

microgrids using artificial neural networks, machine learning, and deep learning techniques. 

Renewable and Sustainable Energy Reviews, 165, 112604. 

https://doi.org/10.1016/j.rser.2022.112604 

[9] Zhang, Y., Wang, J., & Li, Y. (2023). Demand-side load forecasting in smart grids using 

machine learning and deep learning techniques: A review. Frontiers in Energy Research, 11, 

Article 11065410. https://doi.org/10.3389/fenrg.2023.11065410 

[10] Kumar, A., & Singh, R. (2022). A review on short-term load forecasting models for 

microgrid applications. IET Generation, Transmission & Distribution, 16(5), 1001–1012. 

https://doi.org/10.1049/tje2.12151 

[11] Abdullah, D. (2025). Metamaterial-based antenna for beam steering in 5G mmWave bands. 

National Journal of RF Circuits and Wireless Systems, 2(2), 8–13. 

[12] Madhanraj. (2025). Unsupervised feature learning for object detection in low-light 

surveillance footage. National Journal of Signal and Image Processing, 1(1), 34–43. 

[13] Aslam, S., Herodotou, H., Mohsin, S. M., Javaid, N., Ashraf, N., & Aslam, S. (2021). A 

survey on deep learning methods for power load and renewable energy forecasting in smart 

microgrids. Renewable and Sustainable Energy Reviews, 144, 110992. 

[14] Arwa, E. O., & Folly, K. A. (2020). Reinforcement learning techniques for optimal power 

control in grid-connected microgrids: A comprehensive review. Ieee Access, 8, 208992-

209007. 

[15] Wazirali, R., Yaghoubi, E., Abujazar, M. S. S., Ahmad, R., & Vakili, A. H. (2023). State-of-

the-art review on energy and load forecasting in microgrids using artificial neural networks, 

https://arxiv.org/abs/2403.01013
https://arxiv.org/abs/2302.14094
https://arxiv.org/abs/2008.05074
https://www.researchgate.net/publication/391394132
https://doi.org/10.1049/tje2.12151


               

IIRJET, Vol. 11, Issue. 2, Dec 2025:  62 - 73  

73 

machine learning, and deep learning techniques. Electric power systems research, 225, 

109792. 

[16] Chandrasekaran, K., Kandasamy, P., & Ramanathan, S. (2020). Deep learning and 

reinforcement learning approach on microgrid. International transactions on electrical 

energy systems, 30(10), e12531. 

 


