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Increased use of renewables makes good load forecasting crucial to
the more efficient running of microgrids, and to the proper
management of their energy. The conventional methods of prediction
are not typically capable of dealing with the highly non-linear,
stochastic and time-varying dynamics commonly observed in modern
microgrid systems. During the last several years, reinforcement
learning (RL) has started to be preferred due to its capabilities of
assisting systems to progress independently and follow the best
learning patterns depending on their real-world experiences. In this
review, a large number of RL-based load forecasting approaches
applied in microgrid environments are considered. The method is
used to arrange past research according to forecasting horizon, the
kind of algorithms employed, character of the information and
judgment basis of outcome. Their efficiency and drawbacks in terms
of real-time forecasting assignments are compared in terms of Q-
learning, Deep Q-Networks (DQN), Proximal Policy Optimization
(PPO) and Actor-Critic. Hybrid models, computation problems and
challenges of merging IoT and edge computing layouts are also
examined by the authors. It talks about the fields in which the recent
research has been lacking and outlines how to proceed, naming
federated learning, multi-agent reinforcement learning and the
standardization of datasets as requirements. This work aims at
demonstrating to the research and developer communities how they
can deploy solid RL techniques to achieve smart, scalable and
reliable microgrid load forecasting.
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1. INTRODUCTION

The integration of additional renewables, electric vehicles and DER is transforming the
way power systems are operated, primarily within the microgrid environments. Accurate and timely
demand forecasting is the main ingredient in stable supply, optimal utilization of system resources
and demand management cost-efficiency. Over the last several years, statistical methods, such as
ARIMA, exponential smoothing and multiple linear regression have been relied upon to perform
power system load forecasting [1]. Such models can perform adequately under simple, regular
conditions, but they tend to fail at capturing the complex, uncertain and stochastic behaviour of
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energy demand in microgrids when weather-dependent renewable generation, fluctuating demand
and user behaviour are in play.

With the implementation of machine learning tools beginning in the last ten years,
specifically the use of models like SVR [2], ANNs and LSTM networks, predictions are now more
accurate due to the data collected through information. These methods, nonetheless, require an
unchanging environment or load to perform best and will have to be retrained in the case of
changes. Hence, scientists have been experimenting with techniques that are adaptive and self-
learning and reinforcement learning (RL) has been shining in this territory.

Other systems are highly dynamic and reinforcement learning lets agents adapt to such
dynamic systems through feedback in their course of action. In addition to the fact that labeled data
is not needed, RL is a perfect choice to predict the loads in microgrids as it is capable of assuming
fast, challenging decisions when data is uncertain [3]. Recent studies demonstrated that Q-learning,
Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO) could assist in making the
forecasts more flexible, minimize prediction error and enable energy-efficient scheduling in smart
grids.

Nevertheless, certain issues exist. A number of RL-based models are incapable of dealing
with different microgrid configurations and struggle to do so because they lack data, are unstable to
converge and have high computational requirements. Consequently, researchers need to develop
architectures that cluster RL with edge computing, federated learning and multi-agent systems to
offer secure and scalable prediction options.

In this paper, types of reinforcement learning have been discussed in anticipation of
microgrid loads to bridge gaps in knowledge. We meticulously study accessible algorithms, their
system configurations, the mode of operation and the ease of deployment. It also identifies the
major research gaps and recommends how to develop robust, intelligent and short-term prediction
techniques of future microgrids. Load forecasting evolution in microgrids is illustrated in Figure 1.
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Figure 1. Load Forecasting Evolution in Microgrids: Traditional to RL Approaches
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2. BACKGROUND
2.1 Microgrid Structure and Load Forecasting Needs

They are small systems that integrate such things as DERs, energy storage and controllable
equipment to serve a local area [4]. They can operate grid-tied or off-grid that provides them with
flexibility, good performance and capability of producing their own energy. Major components of a
microgrid include a solar or wind power machine, a diesel or gas-powered generator, battery pack,
smart meter and an EMS to direct the interaction between them.

One primary reason why a microgrid is important is that it can maintain constant balance
between the produced energy and the consumed energy. This is why power demand forecasting is
required since it determines how power is distributed [5], how batteries are charged and discharged,
and how customers react to the energy market change. Due to the potential volatility of renewable
energy and unpredictable needs of the consumers in microgrids, the demand of the power becomes
more significant and challenging to forecast.

2.2 Classification of Forecasting Horizons

Short-term, intermediate-term and long-term forecasting are referred to as load forecasting
and each type has its purpose in terms of value to operations and planning.

STLF is a technique of extrapolating electrical load over several minutes to hours.
Primarily it is used to make run decisions such as which generators to turn on, how to instruct
energy usage and when to charge or discharge batteries. In MTLF, the requirement of swift and
precise data is quite essential. In this level, its primary applications are in the scheduling of
maintenance, bidding of electricity and fuel purchase timing. In the case of LTLF, we consider the
timeframe of months to years because it is applied in the development of new infrastructure,
establishment of laws and expansion of supply. So trends and scenarios are significant to STLF as
it is highly involved in microgrid systems that direct daily operations and are a main factor in grid
stability [6].

2.3 Key Performance Metrics in Load Forecasting

The usefulness of the forecasting models depends on checking the accuracy of the
predictions they give. The literature contains many articles that employ various measures of
performance to determine the accuracy of forecasts.

Mean Absolute Percentage Error (MAPE):
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It expresses the average error as a percentage of actual values and is widely used due to its
interpretability. However, it can be biased when actual values are near zero.

Root Mean Square Error (RMSE):

RMSE penalizes large errors more than smaller ones and is suitable when larger
forecasting errors are particularly undesirable.

n
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Mean Absolute Error (MAE):

n
1
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MAE provides an absolute measure of average forecast error and is less sensitive to
outliers than RMSE.

R-squared (R?): quantifies the ratio of the variance in the observed load that is predicted by the
model. It is commonly employed together with measures of error in assessing the overall goodness-
of-fit.

In the case of reinforcement learning based load forecasting these are the metrics either
used to train objectively or to measure following training [7]. The optimal forecasting model to be
utilized together with microgrids must not alone be precise in its forecasts but also respond rapidly
to rapid changes and support critical operational decisions. Figure 2 represents the reinforcement
learning-enabled load forecasting and control framework in a microgrid.
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Figure 2. Reinforcement Learning-Enabled Load Forecasting and Control Framework in a
Microgrid

2.4 Reinforcement Learning: Concepts and Algorithms

Such a learning approach is called Reinforcement Learning (RL) [8], which assists an
independent system to make recurrent choices in a setting based on the rewards it receives. Reward
Learning consists of four components: the agent, the environment, a reward signal and a policy.
The agent constructs strategies such that the agent achieves the most benefit in the long run, most
often by considering an MDP where the future state is only dependent on the present state and the
action of the agent. RL can manage energy systems and foretell loads, unlike supervised learning
that utilizes fixed data and needs to be re-trained each time the environment adjusts; RL can use its
findings about the world.
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Algorithms Reinforcement learning algorithms are currently finding application in energy
demand prediction and the smart grid domain [9]. The selection of Q-Learning is very popular
since the best actions are easy to learn. DQN Deep neural networks are utilized in DQN to assist
the Q-learning to dealing with high-dimensional spaces, which is common in multivariate load
prediction. Addressing the issue of overestimation in Q-learning, Double DQN furnishes the
process of action selection and evaluation as separate.

DDPG is a favorite choice since deterministic policy learns in continuous action spaces,
which are prevalent in reinforcement learning with actor-critic architecture. PPO aims at
encouragement of stability as well as great performance, achieved through clipping of the
probability ratios during leaning. Actor-Critic models with A2C and A3C maintain the policy and
value function in sync with each other and are able to adaptation in real-time scenarios [10].
Whereas other methods, such as SVMs or LSTMs, are fixed, RL algorithms can enhance
themselves during interaction, which is why they are well suited to be used in microgrids which
continuously vary. Figure 3 shows the independent illustrations of supervised learning and
reinforcement learning paradigms.
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Figure 3. Independent Illustrations of Supervised Learning and Reinforcement Learning Paradigms

Benefits of Applications and Algorithms for Reinforcement Learning

e Capacity to Manage Nonlinear and Complex Systems

Reinforcement learning algorithms are well suited for environments characterized by nonlinear,
stochastic, and time-varying dynamics. Unlike traditional model-based or supervised learning
approaches, RL does not require explicit system modeling, making it effective for complex real-
world applications such as microgrids, robotics, and autonomous systems.

e  Model-Free Learning Capability

A major advantage of RL is its model-free nature, where optimal policies are learned directly
through interaction with the environment. This is particularly beneficial in systems where accurate
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mathematical models are difficult [11] or expensive to obtain, such as energy systems with
renewable integration or dynamic consumer behavior.

e Flexibility in Changing and Unpredictable Situations

RL algorithms continuously learn and adapt based on real-time feedback [12]. This enables them to
respond effectively to changes in system conditions, uncertainties, and disturbances, making RL
suitable for applications involving fluctuating loads, renewable energy variability, and evolving
operational constraints.

e  Sequential Decision-Making and Long-Term Optimization

Unlike traditional optimization methods that focus on immediate outcomes, RL optimizes long-
term cumulative rewards. This characteristic makes RL ideal for sequential decision-making
problems, such as energy management, load forecasting, traffic control, and resource allocation.

e Deep Reinforcement Learning's Scalability

The integration of deep neural networks with reinforcement learning (Deep RL) enables scalability
to high-dimensional state and action spaces. Techniques such as Deep Q-Networks (DQN),
Proximal Policy Optimization (PPO) [13], and Actor—Critic methods allow RL to handle complex
sensory inputs and large-scale systems.

e Decreased Reliance on Labeled Information

RL does not require labeled datasets, unlike supervised learning methods. Instead, learning is
guided by reward signals, reducing data labeling costs and enabling continuous online learning in
real-world environments.

e  Capability to Make Decisions in Real Time

Many RL algorithms can operate in near real time once trained, enabling fast and autonomous
decision-making. This is critical for applications such as smart grids, autonomous vehicles,
robotics, and industrial automation.

o Adaptability in a Variety of Applications

Reinforcement learning has been successfully applied across a wide range of domains, including
smart grids, microgrids, robotics, healthcare, finance, transportation, and gaming. Its general-
purpose learning framework allows easy adaptation to different problem settings.

e  Combining Emerging Technologies

RL can be effectively combined with emerging paradigms such as Internet of Things (loT), edge
computing, digital twins, and cyber-physical systems. This integration enhances intelligent
decision-making in distributed and resource-constrained environments.

e  Assistance with Distributed and Multi-Agent Systems

Multi-agent reinforcement learning (MARL) enables coordination and cooperation among multiple
agents operating in decentralized systems. This is particularly beneficial for applications such as
distributed energy management, swarm robotics, and networked control systems.

e Sturdiness in the Face of Uncertainty and Noise

RL algorithms learn optimal behaviors despite noisy measurements, incomplete information, and
uncertain environments. This robustness improves reliability in real-world deployments.

e Constant Improvement with Experience
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RL systems improve performance over time as more interaction data become available. This
lifelong learning capability allows systems to adapt to evolving environments and operational
objectives.

¢ Improved Decision Quality in Relation to Rule-Based Systems

Compared to fixed rule-based or heuristic approaches, RL can discover more efficient and optimal
strategies by exploring the environment and learning from outcomes, often outperforming
traditional methods.

e Enables Intelligence and Automation

Reinforcement learning enables autonomous systems to operate with minimal human intervention,
reducing operational complexity and enabling intelligent automation in complex systems.

3. REVIEW OF RLALGORITHMS FOR LOAD FORECASTING IN MICROGRIDS

In microgrids, lately, there has been more effort to use reinforcement learning to load
forecasting, owing to its proficiency in repeated choice modeling and responding to demand
alterations. In this text, | explain the latest RL-based forecasting approaches displaying their
algorithms and the way to utilize them, important metrics involved and their practical application in
the real world.

3.1 Categorization Based on RL Algorithm

The study indicates that the two categories of RL algorithms are widely applicable in
making predictions [14]. Q-learning and DQN are used by many people as they are easy and assist
in discrete action problems. Instead, issues with continuous load prediction have led to measures
such as adopting policy gradient methods and actor-critic models such as PPO, A2C and DDPG.
These algorithms exhibit better behavior in scenarios when both the load and time are affected by
other means.

3.2 Model Architectures and Hybrid Frameworks

Most of the researchers have developed DRL models through applying RL and neural
networks that enables us to appreciate and utilize information in high-dimensional input data.
Moreover, these models succeed in the forecast because they take into account the variation of load
with time. One has the thought to combine RL with a supervised technique like SVR or ensemble
technique so as to assist the system to use the exploratory policy approach and yet observe the
distinction in the representing functions.

3.3 Data Sources and Forecasting Scenarios

The majority of the works reviewed use real-world data available on OpenEl, the UCI
Machine Learning Repository or provided by utilities or operate with the data synthesized under
the GridLAB-D or Simulink simulation conditions. The majority of the cases contemplate the
short-term load forecasting (STLF) with a time step ranging between 15 minutes to 1 hour [15],
which is required in real-time control and storage scheduling. There are also a few attempts to use
RL in medium-term or multi-purpose forecasting problems, largely in the form of model predictive
control.

3.4 Evaluation Metrics and Performance Comparison
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MAPE, RMSE and MAE are common performance assessment methods of RL-based
forecasting models. In a number of situations, the RL-based techniques perform superior to the
conventional methods, primarily where there are alterations in the load. Though they have benefits,
the employments of the techniques in the resource constrained microgrid control system may be
doubtful because they require more time and are more expensive during the training process.
Following Table 1 presents the comparative analysis of RL algorithms.

Table 1. Comparative Analysis of RL Algorithms for Load Forecasting in Microgrids

Study RL Forecasting | Dataset Performance | Key Findings
Algorithm | Horizon Metrics
Reinforcement Q- Short-Term | Real-time MAPE, Demonstrated
Learning-Based | Learning meter data | RMSE improved
Online Learning adaptability in
Strategy for real-time
Real-Time Load forecasting
Forecasting scenarios.
A Review on Various Short-Term | Diverse MAPE, Provided a
Short-Term Load | (including microgrid MAE, RMSE | comprehensive
Forecasting RL) datasets comparison of
Models for models,
Microgrid highlighting
the
effectiveness
of RLin
certain
contexts.
Energy Deep Q- Short to Thermal MAPE, CNN-LSTM-
Forecasting: A Network Medium- power unit | RMSE, MAE | A model
Comprehensive | (DQN) Term data outperformed
Review of conventional
Techniques and LSTM,
Applications indicating the
potential of
hybrid deep
learning
approaches.
Short-Term Load | SVR- Short-Term | Rural Correlation SVR-LSTM
Forecasting of LSTM microgrid Coefficient model
Microgrid via Hybrid in Africa achieved
Hybrid Support higher
Vector accuracy
Regression-Long compared to
Short-Term individual
Memory SVR and
LSTM
models.
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Enhancing Attention- | Short-Term | Micro-grid | MAE, Achieved
Microgrid Based Tariff RMSE, R2 MAE of 0.39,
Performance GRU Assessment | Score RMSE of
Prediction with Tool 0.28, and R2 of
Attention-Based dataset 98.89%,
Deep Learning outperforming
Models traditional ML
models.
Reinforcement Q- Short-Term | Two-year Not specified | Implemented a
Learning-Based | Learning load and dynamic
Dynamic Model weather model
Selection for data selection
Short-Term Load approach,
Forecasting improving

forecasting
accuracy by
approximately
50% compared
to state-of-the-

art ML
models.
Optimal Prioritized | Multi- Simulated | Not specified | Proposed a
Scheduling of Experience | Period microgrid forecasting
Isolated [16] Replay data method
Microgrids AutoRL addressing
Using error
Automated accumulation
Reinforcement in multi-step
Learning-Based forecasting,
Multi-Period leading to
Forecasting improved
prediction
accuracy and
reduced
operating
costs.

3.5 Comparative Summary of Reviewed Studies

To facilitate the comprehension, readers frequently find it helpful when a short comparison
of the major studies is provided. The following table contains the description of various
representatives of literature that are different in the type of algorithm, dataset, the distance into the
future a forecast has to be made, whether hybrid methods are used and what performance is
achieved. The systematic methodology enables us to identify the trend in selecting algorithms and
highlights which RL methods are compatible with some characteristics of microgrid load
forecasting.
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4. CHALLENGES AND LIMITATIONS

Although RL may be quite effective in predicting smart loads in microgrids, the absence of
decent data restricts its broad usage. In practical microgrids, data to carry out such optimizations is
insufficient, fragmented or difficult to access in a uniform way. Deep reinforcement learning
algorithms take powerful computers, a lot of memory and a lot of time to run. It poses challenges to
microgrids that rely on low-power systems or minor computing locations. When the environment is
non-stationary, these models may have difficulties in continuing to learn since the dynamic loads
are continuously varying. However, extrapolation of the findings to unmeasured circumstances is
yet to be achieved. RL models trained on particular datasets would exhibit an issue of new
seasonal, demographic or geographic variations thus become inflexible. Such challenges have to be
sorted out to have improved and flexible, reliable and instantaneous predictions in any network.

5. FUTURE RESEARCH DIRECTIONS

To bring the RL-based load forecasting in microgrids more realistic and scalable, several
thrilling future investigations are emergent.

With the use of transfer learning and federated reinforcement learning, the adaptation of
models and preservation of privacy in data becomes less challenging. Transfer learning, or transfer
RL, makes it simple to apply what has been learned in one microgrid setting to another without
much retraining. The focus is to ensure that these models are efficient to the point that the forecast
can be undertaken on time. This method is also promising as it allows MARL to facilitate
intelligent load shifting and peak shaving, with the reminder of real-time updates of forecasts,
prices and user preferences. The future of MARL requires the sharing of popular benchmarks and
datasets, to ensure fair comparisons and speed up progress. One set of evaluation measures and
assessment steps will allow us to appreciate future models in a more reasonable way.

6. CONCLUSION

We have provided the entire literature survey on the position of reinforcement learning
(RL) algorithms in microgrid load forecasting. Due to the very complex and dynamic nature of
energy systems, the research considers applying Reinforcement Learning instead of the typical
statistical or supervised learning. As we have seen, RL-based models can deal with nonlinear loads,
real-time prediction and environmental uncertainty, but are not yet used in large scale due to
absence of required data, extreme system load, issues of stability and limited adaptability.
Meanwhile, new concepts in forecasting are being promoted by transfer learning, federated
reinforcement learning, lightweight models and multi-agent systems.

The operation of microgrids will be based on RL operating alongside demand response,
embedded systems and decentralized systems in order to become resilient, efficient and more
intelligent. Any further studies should be based on a solid methodology that will rely on standard
data and benchmarking strategies. An important advancement towards constructing intelligent,
scalable and self-regulating forecasting systems required to promote sustainable energy in
microgrids involves reinforcement learning.
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