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 High-performance control and precise functioning of mechatronic 

systems depend on accurate modelling of friction dynamics; 

nevertheless, non-linear, time-varying, and system- specific friction 

effects are frequently missed by traditional friction models. In this 

paper, a data-driven model for machine learning-based friction 

dynamics identification in mechatronic systems is presented. The 

suggested method learns friction behaviour from the measured 

system data, allowing for an accurate depiction of complicated non-

linear dynamics without the need for explicit theoretical friction 

formulations. A variety of neural network-based models, such as 

feedforward neural networks (FNNs), convolutional neural networks 

(CNNs), long short-term memory (LSTM) networks, as well as 

transformers, as well as cutting-edge machine learning methods like 

physics-informed neural networks (PINNs) and sparse identification 

of nonlinear dynamics (SINDy), are included in the framework. The 

integration of these methods to real-world systems is the main focus. 

The efficacy of the FNN, CNN, LSTM, transformers, SINDy, & 

PINN methods for data-driven friction modelling and system 

identification is assessed using a geared DC motor as a case study. 

The findings show that for this traditional nonlinear dynamical 

system, all machine learning techniques under consideration provide 

excellent predictive performance. Furthermore, compared to solely 

data-driven black-box models, the SINDy and PINN models provide 

improved interpretability. The comparison analysis reveals each 

approach's advantages and disadvantages with regard to computing 

complexity, interpretability, and forecast accuracy. Potential uses and 

future research paths are explored, and the suggested models offer a 

versatile basis for friction-aware modelling as well as control of 

mechatronic systems. 
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1. INTRODUCTION 

The dynamic behaviour, energy efficiency, and operator performance of mechatronic 

systems are all greatly impacted by friction, which is an intrinsic and inevitable occurrence. 

Friction can cause nonlinear effects including stick-slip motion, hysteresis, dead spots, and limit 

cycles in accuracy motion systems like robotic actuators, electric motors, and servo mechanisms 

[1]. These effects reduce tracking accuracy and may even cause closed-loop control systems to 

become unstable. Therefore, in contemporary mechatronic applications, precise friction modelling 

is a basic requirement for high-performance operation, system recognition, and fault diagnosis. 

Due to their straightforward scientific interpretation and analytical tractability, classical 

friction models—such as the Coulomb, fluid, Stribeck, LuGre, and Dahl theories—have been 

frequently used. These models frequently rely on simple assumptions and rigid parameterizations, 

which restrict their capacity to represent complicated [2], time-varying, and system-specific friction 

events, despite their success in several applications. Accurate parameter identification is difficult in 

practice because friction characteristics might vary according on operating circumstances, 

temperature, wear, lubricity, and load fluctuations.  

Furthermore, classical models are unsuitable for high-precision applications due to the non-

linear as well as memory-dependent nature of friction, especially under different operating regimes. 

In recent years, data-driven modelling techniques have drawn more attention as a solution to these 

constraints. Without the need for explicit analytical formulations, machine learning (ML) 

approaches enable the direct approximation of complex nonlinear mappings from measurable data. 

Strong approximation skills in modelling uncertain or partially know system dynamics, particularly 

friction effects, have been shown by neural networks in addition to learning-based models. These 

methods are appealing for friction recognition in actual-world mechatronic systems such as Figure 

1  [3] because they allow for unmodeled dynamics and adjust to system-specific behaviour by 

using experimental data. 
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Complex emergent dynamical behaviour results from the numerous components and 

numerous parameters and degree of freedom found in real-world engineering systems. In many 

engineering domains today, the evaluation of structural vibrations is still difficult due to nonlinear 

and damping phenomena, which make modelling and prediction problematic, as well as the 

computing limitations of large-scale numerical approaches [4]. These machines' dynamics are 

frequently dependent on a wide range of factors, such as loading circumstances or uncertain 

components, which might vary during the course of operation or the system's lifetime and result in 

bifurcations or crucial regime shifts. Analysing and comprehending the mechanics underlying 

mathematically driven regime changes is essential for the secure operation of complex devices in 

order to avoid key transitions into undesirable or even hazardous areas of operation. When 

discussing various external loads imposed by operation and subsequent changes in system 

component qualities, such as decreased stiffness values due to greater temperatures brought on by 

heavy loading conditions, we refer to parameters in the following. For many high-dimensional non 

linear dynamical systems, our method is generally applicable. The rich vibrations caused by 

friction in automotive disc braking systems are used as an example application case in this article. 

Problem Statement 

A uniform and systematic structure that assesses and contrasts various machine learning 

techniques—from deep learning to physics-informed methods to classical neural networks—for 

friction dynamic identification using actual experimental data is lacking, despite the expanding 

body of studies on data-driven friction modelling. Specifically, the trade-offs between computing 

complexity, interpretability, and prediction accuracy are still poorly understood. This gap restricts 

practitioners' ability to choose suitable modelling approaches for friction-aware controls and 

system recognition in real-world mechatronic systems. 

Recent research has investigated the modelling and compensation of friction using 

feedforward neural network models, neural networks that recur, and deep learning architectures. 

Adoption of such black-box models in safety-critical and live control systems may be hampered by 

their restricted accessibility and increased computational cost, even if they frequently achieve 

excellent prediction accuracy. Additionally, a lot of current research concentrates on a single 

modelling strategy or mostly uses simulation-based validation, providing little understanding of the 

relative benefits and drawbacks of various machine learning methods when applied to actual 

systems. 

Main Contributions 

1. Data-driven framework for friction identification: In order to identify friction dynamics in 

electronic systems without the need for explicit analytical friction models, this research 

develops a data-driven framework. The system successfully captures irregular, time-varying, 

and historical-dependent friction effects that can be challenging to predict using traditional 

methods by directly learning friction behaviour from experimental data.  

 

2. LSTM-based modelling and experimental validation: Using actual experimental 

information from a geared DC motor, an LSTM-based friction modelling technique is used and 

verified. The findings emphasise the applicability of sequenced learning for friction behaviour 

identification by demonstrating accurate frictional torque prediction under both steady-state 

and transitory operating situations, including low-speed movements and velocity reversals. 

 

3. In-depth experimental evaluation of modelling performance using time- domain and 

velocity- domain studies, backed by quantitative performance indicators, is presented in this 
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study. The findings provide useful information about the efficacy of data-driven friction 

modelling and its possible use in friction-aware mechatronic system modelling and control. 

This is how the rest of the paper is structured. Related research on data-driven and 

traditional friction modelling in mechatronic systems is reviewed in Section 2. The experiment's 

setup, data collection procedure, feature extraction, and suggested LSTM-based friction modelling 

approach are all covered in Section 3. The implementation specifics and experimental findings are 

shown in Section 4. The work is finally concluded in Section 5, which also suggests future research 

areas. 

 

2. LITERATURE REVIEW 

Due to its substantial impact on motion precision, cost effectiveness, and closed-loop 

control performance, friction modelling has been thoroughly investigated in the context of 

mechatronic systems. To depict friction-induced nonlinearities [5], classical friction models like the 

Coulomb, viscous, Stribeck, Dahl, and LuGre model have been used extensively. These models are 

computationally efficient and provide obvious physical explanations, but their efficacy heavily 

relies on precise parameter identification. Pressure, load, wear, & lubrication are examples of 

operating circumstances that affect friction characteristics in real-world systems, resulting in time-

varying behaviour that static models are unable to accurately capture. Because of this, complicated 

phenomena like hysteresis, sliding displacement, and stick-slip motion under different conditions 

are frequently not captured by standard friction models. 

Data-driven methods have drawn more attention as a way to get beyond the drawbacks of 

analytical friction formulations [6]. Feedforward neural networks were used in early research to 

approximate frictional forces as non-linear functions of quantifiable system variables, showing 

better accuracy than traditional models. More complex architectures like convolutional neural 

networks & recurrent neural networks, among others, have been investigated as machine learning 

has advanced. Long short-term memory networks, in particular, have demonstrated efficacy in 

capturing the dynamic & past-dependent nature of friction, allowing for improved prediction under 

changeable and transient operating situations. These black-box models can be useful in safety-

critical & real-time control systems, but they often lack interpretability & require a lot of training 

data, despite their high approximation capabilities. 

Because transformer-based models may capture long-range time dependence through 

attention mechanisms, they have recently become a potent tool for modelling nonlinear dynamical 

systems. Transformers have demonstrated encouraging outcomes in time-series prediction and 

system identification tasks [7], but their use in friction modelling in mechatronic systems is still 

very restricted. Furthermore, immediate implementation & physical interpretability are hampered 

by transformer models' complicated computational requirements and opaque internal 

representations. 

To create a general friction model, a mechanistic-based data-driven (MBDD) method is 

suggested. The suggested method may manage friction in multiple body systems with various 

contact surfaces based on deep neural networks' capacity for generalisation. Furthermore, the 

suggested mechanistic-based data-driven method may make use of both numerical and 

experimental data, enabling it to anticipate complicated mechanical systems' [8] dynamic 

behaviour with minimal data. The numerical simulation and the experimental test are ultimately 

compared. The findings demonstrate that the suggested approach can accurately forecast the 
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dynamic behaviour of a complex multi-body system and can represent a number of significant 

friction phenomena, including stiction, viscous friction, and the Stribeck effect. 

A case study utilising actual experimental results from a friction braking system is used to 

illustrate a purely data-driven method of mapping out the condition of a dynamical structure over a 

set of selected parameters. It is challenging to understand complex engineering systems' rich 

bifurcation behaviour with regard to one or more parameters through experimental methods or 

numerical simulations. Simultaneously [9], the increasing demand for energy-efficient devices that 

can function in a variety of harsh environments necessitates a deeper comprehension of these 

systems in order to prevent crucial shifts. 

We suggest a data-driven, physics-based method for state-space modelling. We formulate 

the issue as a probabilistic representational learning problem. The hybrid model replaces the 

previously unknown substructures by combining parametrised functions, expressed as neural 

networks, with known physical relations [10]. The Expectation-Maximization (EM) technique is 

used to address the identification problem. Bayesian smoothers are used in the Expectation stage to 

obtain complete state estimations from incomplete observations. The combined model is fitted to 

the smoothing data in the M-step. The physics-based prior model is a powerful model prior even 

though it sacrifices expressiveness. Using a physical model prior helps to both decrease the 

difficulty of the M-step and increase the accuracy of inference during the E-step. 

As demonstrated by the two examples of creating friction test data, the data-driven 

frictional model not only maintains the LuGre model's accuracy in conveying the dynamic 

behaviour of friction at no velocity but also enhances the model's accuracy while convergence 

speed thanks to PINN's potent learning capability. Second, a composite compensation method 

focused on friction compensation is suggested based on the data-driven friction model [11]. In 

order to obtain precise oversight of the servo actuator, the extended Kalman filter suppresses 

random disturbance and the friction compensator compensates for the actuator's internal friction. 

 

3. METHODS AND MATERIALS 

3.1 Experimental Setup and System Description 

A geared DC motor is used in the experiment as a sample mechatronic system with 

nonlinear friction effects. The motor has an incremental encoder for measuring angular position 

and is powered by a voltage-controlled power amplifier [12]. Numerical derivation of the location 

signal yields angular velocity, which is then filtered appropriately to minimise measurement noise. 

An additional indicator of the imparted electromagnetic torque is motor current, which can be 

detected using a current sensor. For data-driven friction detection, synchronised collection of 

voltage, current, location, and velocity measurements is made possible by the experimental setup. 

3.2 Data Collection 

In order to stimulate a variety of friction behaviours, such as low-speed motion, velocity 

changes, and steady-state operation, experimental data are gathered under a variety of operating 

situations. Persistently stimulating input signals, such as multilayer voltage steps and oscillatory 

voltage profiles with different amplitudes and frequency [13], are used to operate the motor. To 

guarantee temporal consistency, data are collected at a predetermined sampling period TsT_sTs. 

The collected dataset consists of input–output pairs of the form 

  { ( )  ( )  ̇( )  ( )}
   

 
                               (1) 
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where ( ) denotes the applied motor voltage,  ( ) is the angular position,  ̇( )  is the 

angular velocity,  ( ) is the motor current, and N is the total number of samples. 

The dataset is split chronologically into training, testing, and test subsets to maintain 

temporal dependencies and guarantee model generalisation. 

3.3 Data Preprocessing and Extraction 

Before the model is trained, raw experiment signals are preprocessed [14]. A low-pass 

filter is used to minimise quantisation and high-frequency noise in encoder-based position data. A 

central difference approach is used to calculate angular velocity, 

 ̇( )  
 (   )  (   )

   
                                              (2) 

followed by smoothing to mitigate numerical amplification of noise. 

  ̈( )    ( )    ( )    ( )                           (3) 

where   ̈ is the rotor inertia,   ( ) is the electromagnetic torque with torque constant   ( )

, and   ( ) symbolises the torque of an external load. Friction torque is calculated as follows when 

there is no load or very little load variation: 

  ( )     ( )    ̈( )                                    (4) 

The acceleration   ( ) is obtained through numerical differentiation of velocity signals 

with appropriate filtering. 

3.4 Feature Selection and Input Representation 

Since friction is a changing and history-dependent phenomenon, the model input includes 

temporal information. The definition of the characteristic vector at the time t is 

 ( )  [ ̇( )  ̇̈( )  ( )]                                   (5) 

and a sequence of past observations is constructed as 

 ( )  { (     )    ( )}                           (6) 

where  ( ) is the length of the sequence. The model can capture friction memory effects 

like hysteresis and presliding behaviour thanks to this sequential input. To increase training 

stability, z-score normalisation is used to all features. 

3.5 LSTM-Based Friction Modeling 

A Long Short-Term Memory (LSTM) neural network is used to simulate the dynamic and 

nonlinear relationship between friction torque and system states. A family of neural network 

designs called LSTM networks was created expressly to identify dependencies that persist in 

sequential data.  

The input, forgets, and output gates that make up each LSTM cell control the flow of 

information in accordance with [15] 

    (       )                                                 (7) 

    (       )                                                   (8) 

 ̃      (       )                                               (9) 
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                ̃                                           (10) 

    (       )                                              (11) 

          (  )                                               (12) 

where    denotes the sigmoid activation function,     (  ) represents element-wise 

multiplication,      is the cell state, and      ̃ is the hidden state. 

The output friction torque is predicted using a fully connected layer, 

 ̂ ( )                                                             (13) 

3.6 Model Training and Evaluation 

The average square error between the estimated and projected friction torque is minimised 

in order to train the LSTM model. 

  
 

 
∑ (  ( )   ̂ ( ))

 
 
                                       (14) 

To avoid overfitting, training is carried out using the Adam optimiser with early halting 

based on validation loss. On the test dataset, the model's performance is assessed using the 

coefficient of correlation   ( ) and the root mean square error (RMSE). The trained model's 

capacity to generalise across various operating regimes, such as low-speed & velocity reversal 

circumstances, is further evaluated. 

 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

4.1 Implementation Details 

Python & the TensorFlow/Keras neural network library are used to implement the 

suggested LSTM-based friction modelling framework. As explained in Section 3, the experimental 

data gathered from the geared DC motor is arranged into sequential input–output pairs. In order to 

balance computing efficiency with temporal dependence capture, a series length kkk is chosen 

empirically. The friction torque is predicted using a single-layer LSTM structure and a fully linked 

output layer.  

The Adam optimiser with a set learning rate is used to train the network. The loss function 

is mean squared error (MSE). To avoid overfitting, early halting based on loss of validation is used. 

To guarantee consistency and repeatability of results, every experiment is carried out on the same 

split dataset. 

Table 1. Summarizes the key hyperparameters used for the LSTM implementation. 

Parameter Value 

Sequence length (( k )) 20 

LSTM hidden units 64 

Number of LSTM layers 1 

Activation function tanh 

Optimizer Adam 

Learning rate 0.001 

Batch size 64 

Training epochs 150 

Loss function Mean Squared Error 
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4.2 Training Performance and Convergence Analysis 

The LSTM model's stable convergence is shown by the validation and training loss curves. 

Good generalisation capacity and the lack of severe overfitting are confirmed by the validation 

loss, which closely tracks the training loss. In order to ensure appropriate model complexity, early 

stopping is initiated once the loss of validation reaches a plateau.  

The evolution of the validation and training loss throughout epochs is shown in Figure 1. 

The efficiency of the chosen hyperparameters and sequence-driven input representation for 

simulating friction dynamics is shown by the loss values' steady decay. 

 

Figure 1. Training and validation loss convergence of the LSTM model 

4.3 Friction Torque Prediction Results 

The predicted accuracy of the training LSTM model is assessed using the untested test 

dataset. The experimentally determined friction torque derived from the motor's dynamics is 

compared with the expected friction torque. Both steady-state friction behaviour and transient 

nonlinear phenomena, such as velocity reversals with low-speed operation, are accurately captured 

by the LSTM model.  

The comparison of the measured (estimated) frictional torque and the LSTM-predicted 

contact torque with time is displayed in Figure 2. The model's capacity to capture nonlinear & 

dynamic friction features is demonstrated by the anticipated signal, which closely resembles the 

reference. 
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Figure 2. Comparison of measured and LSTM-predicted friction torque. 

4.4 Quantitative Performance Evaluation 

Root mean square error (RMSE) & coefficients of correlation (R2R^2R2) are determined 

for the test dataset in order to objectively assess the modelling accuracy. Both absolute error in 

prediction and good of fit are revealed by these measurements. 

Table 2. reports the quantitative performance of the LSTM-based friction model 

Metric Value 

RMSE (Nm) 0.012 

MAE (Nm) 0.009 

( R^2 ) 0.982 

The low RMSE verifies accurate prediction across several operating regimes, while the 

high R2R^2R2 value shows that the LSTM model accounts for most of the variability in the 

friction torque. 

4.5 Friction Characteristics in the Velocity Domain 

Plotting the expected friction torque vs rotational velocity allows for additional analysis of 

the learnt friction behaviour. This illustration demonstrates how the model may describe velocity-

dependent friction phenomena like hysteresis close to zero velocity, Stribeck behaviour, and 

Coulomb friction.  

The friction–velocity relationship derived from both experimental estimates and LSTM 

prediction is shown in Figure 3. The LSTM model successfully captures nonlinear friction features 

without depending on explicit analytic friction formulations, as confirmed by the close overlapping 

between the curves. 
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Figure 3. Friction torque versus angular velocity for experimental and LSTM-predicted results. 

4.6 Comparative Discussion with Classical Modeling Approaches 

The LSTM-based methodology is the main emphasis of this section, however its 

performance is quantitatively compared with traditional friction modelling methods. The suggested 

data-driven model automatically adjusts to system-specific friction behaviour, in contrast to 

analytical approaches that need explicit parameter calibration. The findings show that transient and 

slow-speed nonlinearities, which are difficult for traditional friction models to capture, can be 

captured with greater precision. 

Table 3. Summarizes the qualitative comparison between classical friction modeling and the 

proposed LSTM-based approach. 

Aspect Classical Models LSTM-Based Model 

Nonlinearity handling Limited Excellent 

Time-varying friction Poor Good 

Interpretability High Moderate 

Prediction accuracy Moderate High 

Parameter tuning Manual Data-driven 

Real-time suitability High Moderate 

4.7 Discussion 

The experimental findings show that under various operating situations, the LSTM-based 

model predicts friction torque for a geared DC motor with accuracy and robustness. Hysteresis and 

presliding behaviour are examples of memory-dependent frictional phenomena that can be 

effectively modelled by incorporating time dependencies. The model's increased accuracy and 

flexibility make it appropriate for friction-aware modelling and sophisticated control applications, 

even if it adds more computing complexity when compared to traditional methods. 

 

 



IIRJET     

Data-Driven Identification of Friction Dynamics in Mechatronic Systems using Machine Learning 

23 

5. CONCLUSION 

An LSTM-based model was used as a sample technique in this paper's data-driven machine 

learning strategy for identifying friction behaviour in mechatronic systems. The suggested 

approach successfully captures non-linear, variable over time, and historical friction effects without 

depending on explicit analytic friction formulations by directly learning friction behaviour from 

experimental data. The model accurately forecasts friction torque under both steady-state as well as 

transient operating situations, including low-speed movement and velocity reversals, according to 

tests performed on a geared DC motor. The outcomes verify that sequence-based learning is 

appropriate for simulating intricate friction dynamics in real-world mechatronic systems. 

The suggested framework is better suitable for friction-aware modelling and control 

applications than traditional friction models because it provides greater flexibility and less reliance 

on human parameter adjustment. Although physical interpretability is limited by the closed-box 

character of deep learning, the accuracy and robustness attained demonstrate the potential of data-

based approaches for practical systems. Future research will concentrate on extending this method 

to online adaptation, including the found models into current control systems, and integrating 

physics-based constraints to improve interpretability. 
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