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 Deep learning (DL) has emerged as a fast expanding field of study in 

recent decades, redefining the state-of-the-art in a variety of methods, 

including speech recognition and object detection. Many projects in 

the fields of aircraft design, behaviour, and control rely on the 

extensive data-driven approach. These projects include the 

development of flight control systems, intelligent sensing, fusion-

based prognosis and health management, and airliner flight safety 

monitoring. Aerodynamic nonlinearities, outside influences, and 

parameter fluctuations result in highly nonlinear, unpredictable, and 

time-varying dynamics for modern aerospace vehicles. Traditional 

robust and adaptive control methods frequently rely on permanent 

structures and simple models, which might restrict performance in 

situations where flying conditions change quickly. A deep learning-

based adaptive flight control structure for nonlinear aircraft systems 

that learns and adjusts for unknown dynamic in real time is presented 

in this research. While an adaptive control rule guarantees closed-

loop safety and trajectory tracking performance, a deep neural 

network is used to simulate modelling uncertainties and unmodeled 

nonlinearities. A nonlinear aeroplane model is used to test the 

suggested method under various aerodynamic circumstances and 

outside disruptions. The potential of machine learning for next-

generation smart flight control systems is highlighted by simulation 

findings that show increased tracking accuracy, resilience, and 

flexibility when compared to conventional model-based adaptive 

controllers. 
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1. INTRODUCTION 

The flight dynamics of contemporary aircraft systems are greatly influenced by nonlinear 

aerodynamics effects, outside influences, and parameter variations in highly fluid and uncertain 

settings. Conventional flight control systems are challenged by nonlinear and time-varying 
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behaviour introduced by fluctuations in airspeed, angles of attack, payload design, environmental 

variables, and structural flexibility [1]. For both manned & unmanned aerial vehicles, maintaining 

stability, resilience, and excellent tracking performance in such circumstances is essential, which 

drives the creation of adaptive flight control techniques. Aerospace systems have made substantial 

use of traditional adaptive as well as robust control methods, such as sliding mode control, model 

reference adaptable control, and gain scheduling. Although these methods provide established 

stability assurances, their performance is frequently constrained by their dependence on pre-

established control systems and simplified mathematical models [2]. While model referencing 

adaptive control may experience sluggish adaptation or decreased resilience in the presence of 

unknown dynamics and actuator restrictions, gain-scheduled controllers necessitate significant 

offline adjustment throughout the flight envelope.  

Furthermore, conservative performance and decreased efficiency during normal operation 

may result from robust control strategies built for worst-case uncertainties [3]. Learning-based 

control techniques have become a viable substitute for managing intricate nonlinearities & 

uncertainties in aeronautical systems in recent years. Specifically, neural networks have excellent 

universal approximation skills that allow them to directly model unfamiliar or partially understood 

system dynamics using data. By training hierarchical representations, deep learning architectures 

expand these capabilities, which makes them ideal for capturing extremely unpredictable and 

coupled hydrodynamic effects that are challenging to characterise analytically. Deep neural 

networks can improve tracking accuracy and resilience by offering real-time modelling uncertainty 

estimation and compensation when used with adaptive control frameworks. 

Despite its potential, stability, understanding, and real-time implementation problems make 

deep learning difficult to use to flight control. Strict performance and stability assurances are 

necessary for safety-critical aircraft applications, which may not be naturally provided by merely 

data-driven controllers [4]. As a result, there has been a growing interest in hybrid techniques that 

integrate deep learning with well-established adaptive control principles. The representational 

capability of deep learning can be utilised while maintaining theoretical stability guarantees by 

integrating neural network-based learning into a structured adaptive management framework. 

                     

Figure 1. Three-dimensional model of quad tiltrotor UAV 
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This paper's research target is a traditional quad tiltrotor unmanned aerial vehicle (UAV), 

whose general three-dimensional model construction is depicted in Figure 1 [5]. The UAV has a 

biplane construction (front & rear wings) and two sets of rotors. The front and rear wings' 

installation angles are 2.5° & 0.11°, respectively, and the wing's aerofoil is NACA63-415. 

Problem Statement 

Current control approaches for nonlinear aerospace components are still limited by their 

reliance on fixed control structures and simple system models, despite notable advancements in 

adaptable and robust flight control. Aerodynamic uncertainties, outside influences, actuator 

constraints, and shifts in operating circumstances all contribute to exceptionally nonlinear, coupled, 

& time-varying dynamics that affect aerospace vehicles in real-world flight situations. When 

system dynamics diverge from nominal assumptions, these effects might result in performance 

degradation, conservatism control behaviour, or loss of robustness since they are hard to adequately 

model using traditional analytical techniques. 

While solely data-driven control approaches lack formal safety and stability guarantees 

necessary for aerospace applications, classical adaptive control approaches frequently show 

insufficient ability to compensate for unobserved dynamics and quickly fluctuating uncertainty. A 

flight control system that can use data-driven learning to increase modelling accuracy, adapt online 

to complicated nonlinear dynamics, and maintain resilient performance and closed-loop stability is 

therefore desperately needed. The main issue examined in this study is how to overcome this 

difficulty. 

Major contributions 

 A Deep Learning-Based Adaptive Flight Controller Framework: In order to compensate 

for unknown unpredictable and time-varying aerodynamic unknowns while ensuring closed-

loop stability, this paper suggests a novel adaptive control of flight architecture that combines 

deep neural network learning with Lyapunov-based adaptive control. 

 

 Data-Driven Uncertainty Modelling for Nonlinear Aircraft Dynamics: To improve 

tracking performance without depending on exact analytical aerodynamic models, a methodical 

approach to data collection, extracting features, and learning is developed to identify and 

estimated unmodeled aircraft dynamics online.  

 

 Comprehensive Evaluation of Performance and Comparative Analysis: Nonlinear flight 

simulations, tracking performance, robustness evaluation under external disturbances, and 

direct comparison with traditional MRAC and PID controllers are used to show the efficacy of 

the suggested controller. 

 

2. LITERATURE REVIEW 

Because of the inherent nonlinearities, unknowns, and external disturbances in aerospace 

systems, adaptive flight management has been a hot topic in academia for several decades. Aircraft 

and unmanned aerial vehicles have made extensive use of traditional adaptive control methods 

including gain planning, model reference adaptive control (MRAC) [6], even linear parameter-

shifting control. Although these techniques have been successfully applied in reality and offer 

theoretical stability assurances, their efficacy heavily relies on precise modelling assumptions and 

predetermined controller architectures. Classical adaptive controllers frequently display reduced 
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performance or cautious behaviour in complicated flight regimes including high angles of attack, 

quick manoeuvres, or shifting aerodynamic properties. 

Neural network-based adaptive control techniques, which employ shallow neural networks 

as function approximates for unknown dynamics, were presented to address modelling 

uncertainties and nonlinear dynamics [7]. Early research showed that when combined with adaptive 

control principles based on Lyapunov stability theory, neural networks could correct for 

aerodynamic uncertainty. Although these methods outperformed purely model-based controllers in 

terms of resilience, their efficacy in highly nonlinear and correlated flight dynamics was 

constrained by shallow structures and manually created feature representations. 

More creative neural network topologies have drawn interest in aerospace applications 

with the development of deep learning [8]. Deep neural networks may learn intricate nonlinear 

mappings straight from input and provide better approximation capabilities. Deep learning has been 

investigated recently for aerodynamic modelling, system identification, problem detection, and 

aerospace system control. In particular, controllers based on reinforcement learning have 

demonstrated encouraging outcomes in challenges involving autonomous flight and manoeuvring. 

However, there are issues with safety, generalisation, and real-time application in safety-critical 

aircraft systems because purely data-driven machine learning controllers frequently lack explicit 

stability guarantee and require large amounts of training data. 

Performance-driven incentive mechanisms and tracking incorrect observation from the 

environment are used in the creation of an actor-critic RL agent [9]. The time-varying adaptation 

method for the design parameters in the reference model response gain matrix is learnt during the 

training phase using a deep determinism policy gradient technique. Rather than being guided by 

high-fidelity simulators, flight testing, and actual flight operations, the suggested control structure 

offers the opportunity to learn many adaption strategies across a broad variety of flight and vehicle 

situations. An identified and validated mathematical framework of an agile quad-rotor platform 

was used to assess the effectiveness of the suggested system. 

The method avoids the traditional and time-consuming process of manual tuning by using 

machine learning to automatically adjust the controller parameters [10]. As a result, the method 

produces a controller with improved performance. In order to show the effectiveness of the 

machine based learning control system in extending the flutter boundaries, the research examines a 

case study involving active flutter suppressing for a flexible wingless aircraft. The suggested 

method uses the actor-critic artificial neural network as an agent and the closed-loop aerodynamic 

system as an environment, based on the environmental/agent interface of reinforcement learning. 

 

3. METHODS AND MATERIALS  

3.1 Nonlinear Aerospace System Modeling 

One prominent example is the longitudinal kinematics of a complex fixed-wing 

aeronautical vehicle. Nonlinear space-time equations derived from Newton-Euler formulas are used 

to describe the motion of the aeroplane [11]. The definition of the state vectors is 

 ( )  [ ( )  ( )  ( )  ( )]                        ( ) 

where   is the airspeed, α\alphaα is the angle of attack, qqq is the pitch rate, and θ\thetaθ is 

the pitch angle. The control input is the elevator deflection  ( ). 

The nonlinear aircraft dynamics can be expressed as [12] 
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 ̇( )   ( ( ))   ( ( ))  ( )   ( )                    ( ) 

where  ( ( )) represents the known nonlinear dynamics,  ( ( ))   denotes the control 

effectiveness, and  ( ) captures unknown uncertainties, unmodeled aerodynamics, and external 

disturbances. 

3.2 Data Collection and Extraction 

Simulations of the non-linear aircraft models under various flying conditions, such as 

variations in airspeed, hauteur, and external disturbances, are used to gather flight data. To 

guarantee adequate system excitation, multi-frequency command signals are used to continuously 

excite the control input x(t). Airspeed, angle of arrival, pitch rate [13], pitch angle, and command 

surfaces deflection are among the signals that are measured: 

  { ( )   ( )}   
                  ( ) 

The unknown nonlinear term  ( ) is extracted by rearranging (1) as 

 ( )   ̇( )    ( ( ))   ( ( ))  ( )             ( ) 

It acts as the neural network's learning target. 

3.3 Feature Extraction 

Measured states & their derivatives are used to create a feature vector that captures 

nonlinear and dynamic effects: 

 ( )  [ ( )  ( )  ( )  ( )  ̇( )   ( )]
               ( ) 

These characteristics offer enough details to depict control-induced dynamics and 

aerodynamic nonlinearities [14]. To increase numerical stability during learning, all features are 

normalised to zero mean and unit variance. 

3.4 Control Objective 

The control objective is to ensure that the aircraft state  ( ) tracks a desired reference 

trajectory. The tracking error is defined as 

 ( )   ( )    ( )                  ( ) 

The goal is to design an adaptive control law  ( ) such that ( ), despite the presence of 

uncertainties  

  ( ) 

3.5 Deep Learning–Based Adaptive Control Design 

3.5.1 Neural Network Approximation of Uncertainties 

A deep neural network (DNN) is employed to approximate the unknown nonlinear 

dynamics  ̂( ). The approximation is given by 

 ̂( )     ( ( ))             ( ) 

where     is the weight matrix and     represents nonlinear activation functions. The 

approximation error is defined as 

 ̂( )   ( )   ̂( )             ( ) 

3.5.2 Adaptive Control Law 
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The input for adaptive control is made as 

  ( )     ( )    ( )   ̂( )         ( ) 

where   ( ) is the equivalent control term based on nominal dynamics, and    ( ) is a 

positive definite gain matrix. 

The closed-system error dynamics are obtained by substituting (8) into (1): 

 ̇( )     ( )   ̂( )         (  ) 

3.5.3 Adaptive Law for Neural Network Weights 

An adaptive learning law based on Lyapunov stability theory is used to update the neural 

network's weight weights online: 

 ̇     ( ( ))  ( )          (  ) 

where    is a positive definite learning rate matrix. 

3.5.4 Stability Analysis 

Examine the Lyapunov candidate function. 

  
 

 
    

 

 
  ( ̃     ̃)         (  ) 

where  ̃     ̃ denotes the weight estimation error. 

Taking the time derivative of VVV and substituting (9) and (10) yields 

 ̇               (  ) 

This ensures the tracking error's asymptotic convergence and the boundedness across all 

closed-loop signals. Qualitatively speaking, an Intelligent Flight Control System (IFCS) is an 

adaptive flight control system that can perceive its surroundings, interpret information, minimise 

uncertainty, plan, produce, and carry out control actions [15]. 

 

Figure 2. An Intelligent Flight Control System Architecture 
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In order to create an incredibly reliable system that can manage several accidents and off-

nominal flight circumstances, IFCS aims to design and assess flight control ideas that include 

cutting-edge algorithms and techniques. The architectural overview of an IFCS with an Online 

Learning Neural Network (OLNN) which takes into account abrupt changes in the aircraft that 

surpass robustness constraints is depicted in Figure 2. 

 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

This section uses nonlinear flight simulations to assess the efficacy of the suggested deep 

learning-based adaptive flight control method. The performance is evaluated in terms on tracking 

precision, resilience to outside disruptions, and comparison with traditional control methods. To 

illustrate its benefits, the suggested controller is contrasted with a traditional PID controller and a 

traditional Model Reference Adaptive Control (MRAC) scheme. 

4.1 Tracking Performance Analysis 

The aircraft is instructed to follow a predetermined pitch angle references trajectory under 

normative flight conditions in order to assess tracking performance. The tracking error time 

evolution for the MRAC, PID, and deep learning-based adaptive controllers is shown in Figure 1. 

When compared with the benchmark controllers, it is found that the suggested approach yields 

noticeably faster convergence & lower steady-state error. The deep learning-based controller 

improves both transient and stable performance by efficiently compensating for nonlinear 

uncertainty.  

The quantitative performance indicators, such as settling time and a root mean square error 

(RMSE), are compiled in Table 1. The suggested method confirms its better tracking capabilities 

by achieving the fastest settling time and the lowest RMSE. 

Table 1. Tracking Performance Comparison 

Controller RMSE Settling Time (s) 

Deep Learning Adaptive Control 0.015 2.1 

MRAC 0.042 4.8 

PID Control 0.085 7.3 

4.2 Robustness Analysis Under External Disturbances 

External sinusoidal disturbance are added to the aircraft dynamics to simulate wind gusts & 

unmodeled aerodynamic phenomena in order to evaluate robustness. The tracking error reaction 

under disturbance conditions is depicted in Figure 2. While the MRAC & PID controllers have 

greater oscillations and worse performance, the deep learning-based adaptive controller sustains 

stable behaviour and shows little error fluctuations.  

Table 2, which displays the greatest tracking error seen during disturbance injection, 

provides additional quantification of the robustness properties. The outcomes show that the 

suggested controller provides improved robustness and higher disturbance rejection capacity. 
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Table 2. Robustness Performance Comparison 

Controller Max Tracking Error Robustness Level 

Deep Learning Adaptive Control 0.028 High 

MRAC 0.091 Medium 

PID Control 0.164 Low 

4.3 Comparative Discussion 

The simulation findings unequivocally show that the performance of flight control for 

nonlinear aircraft systems is greatly enhanced by incorporating deep learning into an adaptive 

control framework. The suggested approach delivers faster convergence, lower tracking error, and 

better robustness under disturbances as compared to traditional MRAC and PID controllers. While 

the flexible control structure guarantees closed-loop stability, the deep neural system efficiently 

learns and adjusts for unknown nonlinear behaviour online.  

All things considered, these findings support the efficacy of the suggested deep learning-

based adaptive flight control approach for managing uncertainties and nonlinearities in aerospace 

systems. 

 

Figure 3. Tracking Error Comparison 

Figure 3, Comparing tracking errors under nominal flying circumstances for the nonlinear 

aviation system. The suggested deep learning-based adaptive controller outperforms traditional 

model of reference adaptive control (MRAC) as well PID controllers in compensating for nonlinear 

as well uncertain flight dynamics, as evidenced by its quicker convergence and noticeably lower 

steady-state tracking error. 
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Figure 4. Robustness Analysis Under External Disturbance 

Figure 4, Analysis of tracking performance's robustness in the face of outside disruptions. 

While the MRAC as well PID controllers show increased oscillations along with performance 

degradation, indicating the improved disturbance rejection capacity of the suggested approach, the 

deep learning-based adaptable controller retains stable and precise tracking in the face of external 

disturbances. 

 

5. CONCLUSION 

In order to overcome the shortcomings of traditional model-based adaptive controllers in 

managing intricate nonlinearities and time-varying uncertainties, this research introduced a deep 

learning-based adaptive flight control structure for nonlinear aerospace systems. The suggested 

method allows online education and compensation of uncertain aerodynamic dynamics while 

maintaining closed-loop stability by incorporating deep neural networks into a Lyapunov-stable 

dynamic control structure. A systematic and adaptable framework that can be applied to a variety 

of aerospace vehicles is provided by the nonlinear aircraft modelling, data-driven uncertainty 

approximated, and adaptive control law formulation. 

According to simulation results, the suggested controller outperforms traditional MRAC & 

PID controllers in terms of tracking performance and resilience. Under varied operating conditions, 

the deep learning-based adaptive controller demonstrated improved disturbance rejection, 

decreased tracking error, and faster convergence. These results demonstrate the promise of 

learning-based adaptive control techniques for intelligent flight management systems of the future. 

Future research will concentrate on fault-tolerant and multi-axis flight control topologies, 

experimental validation, and real-time implementation. 
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