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Deep learning (DL) has emerged as a fast expanding field of study in
recent decades, redefining the state-of-the-art in a variety of methods,
including speech recognition and object detection. Many projects in
the fields of aircraft design, behaviour, and control rely on the
extensive data-driven approach. These projects include the
development of flight control systems, intelligent sensing, fusion-
based prognosis and health management, and airliner flight safety
monitoring. Aerodynamic nonlinearities, outside influences, and
parameter fluctuations result in highly nonlinear, unpredictable, and
time-varying dynamics for modern aerospace vehicles. Traditional
robust and adaptive control methods frequently rely on permanent
structures and simple models, which might restrict performance in
situations where flying conditions change quickly. A deep learning-
based adaptive flight control structure for nonlinear aircraft systems
that learns and adjusts for unknown dynamic in real time is presented
in this research. While an adaptive control rule guarantees closed-
loop safety and trajectory tracking performance, a deep neural
network is used to simulate modelling uncertainties and unmodeled
nonlinearities. A nonlinear aeroplane model is used to test the
suggested method under various aerodynamic circumstances and
outside disruptions. The potential of machine learning for next-
generation smart flight control systems is highlighted by simulation
findings that show increased tracking accuracy, resilience, and
flexibility when compared to conventional model-based adaptive
controllers.
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1. INTRODUCTION

The flight dynamics of contemporary aircraft systems are greatly influenced by nonlinear
aerodynamics effects, outside influences, and parameter variations in highly fluid and uncertain
settings. Conventional flight control systems are challenged by nonlinear and time-varying
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behaviour introduced by fluctuations in airspeed, angles of attack, payload design, environmental
variables, and structural flexibility [1]. For both manned & unmanned aerial vehicles, maintaining
stability, resilience, and excellent tracking performance in such circumstances is essential, which
drives the creation of adaptive flight control techniques. Aerospace systems have made substantial
use of traditional adaptive as well as robust control methods, such as sliding mode control, model
reference adaptable control, and gain scheduling. Although these methods provide established
stability assurances, their performance is frequently constrained by their dependence on pre-
established control systems and simplified mathematical models [2]. While model referencing
adaptive control may experience sluggish adaptation or decreased resilience in the presence of
unknown dynamics and actuator restrictions, gain-scheduled controllers necessitate significant
offline adjustment throughout the flight envelope.

Furthermore, conservative performance and decreased efficiency during normal operation
may result from robust control strategies built for worst-case uncertainties [3]. Learning-based
control techniques have become a viable substitute for managing intricate nonlinearities &
uncertainties in aeronautical systems in recent years. Specifically, neural networks have excellent
universal approximation skills that allow them to directly model unfamiliar or partially understood
system dynamics using data. By training hierarchical representations, deep learning architectures
expand these capabilities, which makes them ideal for capturing extremely unpredictable and
coupled hydrodynamic effects that are challenging to characterise analytically. Deep neural
networks can improve tracking accuracy and resilience by offering real-time modelling uncertainty
estimation and compensation when used with adaptive control frameworks.

Despite its potential, stability, understanding, and real-time implementation problems make
deep learning difficult to use to flight control. Strict performance and stability assurances are
necessary for safety-critical aircraft applications, which may not be naturally provided by merely
data-driven controllers [4]. As a result, there has been a growing interest in hybrid techniques that
integrate deep learning with well-established adaptive control principles. The representational
capability of deep learning can be utilised while maintaining theoretical stability guarantees by
integrating neural network-based learning into a structured adaptive management framework.
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Figure 1. Three-dimensional model of quad tiltrotor UAV
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This paper's research target is a traditional quad tiltrotor unmanned aerial vehicle (UAV),
whose general three-dimensional model construction is depicted in Figure 1 [5]. The UAV has a
biplane construction (front & rear wings) and two sets of rotors. The front and rear wings'
installation angles are 2.5° & 0.11°, respectively, and the wing's aerofoil is NACA63-415.

Problem Statement

Current control approaches for nonlinear aerospace components are still limited by their
reliance on fixed control structures and simple system models, despite notable advancements in
adaptable and robust flight control. Aerodynamic uncertainties, outside influences, actuator
constraints, and shifts in operating circumstances all contribute to exceptionally nonlinear, coupled,
& time-varying dynamics that affect aerospace vehicles in real-world flight situations. When
system dynamics diverge from nominal assumptions, these effects might result in performance
degradation, conservatism control behaviour, or loss of robustness since they are hard to adequately
model using traditional analytical techniques.

While solely data-driven control approaches lack formal safety and stability guarantees
necessary for aerospace applications, classical adaptive control approaches frequently show
insufficient ability to compensate for unobserved dynamics and quickly fluctuating uncertainty. A
flight control system that can use data-driven learning to increase modelling accuracy, adapt online
to complicated nonlinear dynamics, and maintain resilient performance and closed-loop stability is
therefore desperately needed. The main issue examined in this study is how to overcome this
difficulty.

Major contributions

o A Deep Learning-Based Adaptive Flight Controller Framework: In order to compensate
for unknown unpredictable and time-varying aerodynamic unknowns while ensuring closed-
loop stability, this paper suggests a novel adaptive control of flight architecture that combines
deep  neural network  learning  with  Lyapunov-based  adaptive  control.

e Data-Driven Uncertainty Modelling for Nonlinear Aircraft Dynamics: To improve
tracking performance without depending on exact analytical aerodynamic models, a methodical
approach to data collection, extracting features, and learning is developed to identify and
estimated unmodeled aircraft dynamics online.

e Comprehensive Evaluation of Performance and Comparative Analysis: Nonlinear flight
simulations, tracking performance, robustness evaluation under external disturbances, and
direct comparison with traditional MRAC and PID controllers are used to show the efficacy of
the suggested controller.

2. LITERATURE REVIEW

Because of the inherent nonlinearities, unknowns, and external disturbances in aerospace
systems, adaptive flight management has been a hot topic in academia for several decades. Aircraft
and unmanned aerial vehicles have made extensive use of traditional adaptive control methods
including gain planning, model reference adaptive control (MRAC) [6], even linear parameter-
shifting control. Although these techniques have been successfully applied in reality and offer
theoretical stability assurances, their efficacy heavily relies on precise modelling assumptions and
predetermined controller architectures. Classical adaptive controllers frequently display reduced
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performance or cautious behaviour in complicated flight regimes including high angles of attack,
quick manoeuvres, or shifting aerodynamic properties.

Neural network-based adaptive control techniques, which employ shallow neural networks
as function approximates for unknown dynamics, were presented to address modelling
uncertainties and nonlinear dynamics [7]. Early research showed that when combined with adaptive
control principles based on Lyapunov stability theory, neural networks could correct for
aerodynamic uncertainty. Although these methods outperformed purely model-based controllers in
terms of resilience, their efficacy in highly nonlinear and correlated flight dynamics was
constrained by shallow structures and manually created feature representations.

More creative neural network topologies have drawn interest in aerospace applications
with the development of deep learning [8]. Deep neural networks may learn intricate nonlinear
mappings straight from input and provide better approximation capabilities. Deep learning has been
investigated recently for aerodynamic modelling, system identification, problem detection, and
aerospace system control. In particular, controllers based on reinforcement learning have
demonstrated encouraging outcomes in challenges involving autonomous flight and manoeuvring.
However, there are issues with safety, generalisation, and real-time application in safety-critical
aircraft systems because purely data-driven machine learning controllers frequently lack explicit
stability guarantee and require large amounts of training data.

Performance-driven incentive mechanisms and tracking incorrect observation from the
environment are used in the creation of an actor-critic RL agent [9]. The time-varying adaptation
method for the design parameters in the reference model response gain matrix is learnt during the
training phase using a deep determinism policy gradient technique. Rather than being guided by
high-fidelity simulators, flight testing, and actual flight operations, the suggested control structure
offers the opportunity to learn many adaption strategies across a broad variety of flight and vehicle
situations. An identified and validated mathematical framework of an agile quad-rotor platform
was used to assess the effectiveness of the suggested system.

The method avoids the traditional and time-consuming process of manual tuning by using
machine learning to automatically adjust the controller parameters [10]. As a result, the method
produces a controller with improved performance. In order to show the effectiveness of the
machine based learning control system in extending the flutter boundaries, the research examines a
case study involving active flutter suppressing for a flexible wingless aircraft. The suggested
method uses the actor-critic artificial neural network as an agent and the closed-loop aerodynamic
system as an environment, based on the environmental/agent interface of reinforcement learning.

3. METHODS AND MATERIALS
3.1 Nonlinear Aerospace System Modeling

One prominent example is the longitudinal kinematics of a complex fixed-wing
aeronautical vehicle. Nonlinear space-time equations derived from Newton-Euler formulas are used
to describe the motion of the aeroplane [11]. The definition of the state vectors is

x(6) = [V(@©), a(t), q(t), 6(®)]" 1

where V is the airspeed, a\alphaa is the angle of attack, qqq is the pitch rate, and 6\theta® is
the pitch angle. The control input is the elevator deflection 6(t).

The nonlinear aircraft dynamics can be expressed as [12]
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x() = f(x(®) + g(x())8.(t) + d(t) 2

where f(x(t)) represents the known nonlinear dynamics, g(x(t))d, denotes the control
effectiveness, and d(t) captures unknown uncertainties, unmodeled aerodynamics, and external
disturbances.

3.2 Data Collection and Extraction

Simulations of the non-linear aircraft models under various flying conditions, such as
variations in airspeed, hauteur, and external disturbances, are used to gather flight data. To
guarantee adequate system excitation, multi-frequency command signals are used to continuously
excite the control input x(t). Airspeed, angle of arrival, pitch rate [13], pitch angle, and command
surfaces deflection are among the signals that are measured:

D = {x(t), 6 ()}e1 (3)
The unknown nonlinear term d(t) is extracted by rearranging (1) as
d(®) = %) — f(x(®)) — g(x(1))8.(t) (4)
It acts as the neural network's learning target.
3.3 Feature Extraction

Measured states & their derivatives are used to create a feature vector that captures
nonlinear and dynamic effects:

@) = [V(©), a(®),q(®),0(1), 4(1), 6. (D]" 5)

These characteristics offer enough details to depict control-induced dynamics and
aerodynamic nonlinearities [14]. To increase numerical stability during learning, all features are
normalised to zero mean and unit variance.

3.4 Control Objective

The control objective is to ensure that the aircraft state V(t) tracks a desired reference
trajectory. The tracking error is defined as

e(t) = x(t) —x-(t) (6)

The goal is to design an adaptive control law e(t) such that (t), despite the presence of
uncertainties

X (t)
3.5 Deep Learning-Based Adaptive Control Design

3.5.1 Neural Network Approximation of Uncertainties

A deep neural network (DNN) is employed to approximate the unknown nonlinear
dynamics d(t). The approximation is given by

d(t) = Ww's(¢(1) ()

where WT ¢ is the weight matrix and W7o represents nonlinear activation functions. The
approximation error is defined as

d(t) = d(t) —d(t) (8)
3.5.2 Adaptive Control Law
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The input for adaptive control is made as
8o (t) = 8oq(t) —Ke(®) —d(t)  (9)

where §,(t) is the equivalent control term based on nominal dynamics, and &,,(t) is a
positive definite gain matrix.

The closed-system error dynamics are obtained by substituting (8) into (1):
e(t) = —Ke(t) +d(t) (10)
3.5.3 Adaptive Law for Neural Network Weights

An adaptive learning law based on Lyapunov stability theory is used to update the neural
network’s weight weights online:

W = —To(¢(t))e” () (11)
where I'o is a positive definite learning rate matrix.

3.5.4 Stability Analysis

Examine the Lyapunov candidate function.
1 1 ~ —
V= EeTe + Etr(WTr-lw) (12)
where WTT~1W denotes the weight estimation error.

Taking the time derivative of VVV and substituting (9) and (10) yields
V<—eTKe (13)

This ensures the tracking error's asymptotic convergence and the boundedness across all
closed-loop signals. Qualitatively speaking, an Intelligent Flight Control System (IFCS) is an
adaptive flight control system that can perceive its surroundings, interpret information, minimise
uncertainty, plan, produce, and carry out control actions [15].
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Figure 2. An Intelligent Flight Control System Architecture
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In order to create an incredibly reliable system that can manage several accidents and off-
nominal flight circumstances, IFCS aims to design and assess flight control ideas that include
cutting-edge algorithms and techniques. The architectural overview of an IFCS with an Online
Learning Neural Network (OLNN) which takes into account abrupt changes in the aircraft that
surpass robustness constraints is depicted in Figure 2.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section uses nonlinear flight simulations to assess the efficacy of the suggested deep
learning-based adaptive flight control method. The performance is evaluated in terms on tracking
precision, resilience to outside disruptions, and comparison with traditional control methods. To
illustrate its benefits, the suggested controller is contrasted with a traditional PID controller and a
traditional Model Reference Adaptive Control (MRAC) scheme.

4.1 Tracking Performance Analysis

The aircraft is instructed to follow a predetermined pitch angle references trajectory under
normative flight conditions in order to assess tracking performance. The tracking error time
evolution for the MRAC, PID, and deep learning-based adaptive controllers is shown in Figure 1.
When compared with the benchmark controllers, it is found that the suggested approach yields
noticeably faster convergence & lower steady-state error. The deep learning-based controller
improves both transient and stable performance by efficiently compensating for nonlinear
uncertainty.

The quantitative performance indicators, such as settling time and a root mean square error
(RMSE), are compiled in Table 1. The suggested method confirms its better tracking capabilities
by achieving the fastest settling time and the lowest RMSE.

Table 1. Tracking Performance Comparison

Controller RMSE Settling Time (s)
Deep Learning Adaptive Control 0.015 2.1
MRAC 0.042 4.8
PID Control 0.085 7.3

4.2 Robustness Analysis Under External Disturbances

External sinusoidal disturbance are added to the aircraft dynamics to simulate wind gusts &
unmodeled aerodynamic phenomena in order to evaluate robustness. The tracking error reaction
under disturbance conditions is depicted in Figure 2. While the MRAC & PID controllers have
greater oscillations and worse performance, the deep learning-based adaptive controller sustains
stable behaviour and shows little error fluctuations.

Table 2, which displays the greatest tracking error seen during disturbance injection,
provides additional quantification of the robustness properties. The outcomes show that the
suggested controller provides improved robustness and higher disturbance rejection capacity.
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Table 2. Robustness Performance Comparison

Controller Max Tracking Error | Robustness Level
Deep Learning Adaptive Control | 0.028 High
MRAC 0.091 Medium
PID Control 0.164 Low

4.3 Comparative Discussion

The simulation findings unequivocally show that the performance of flight control for
nonlinear aircraft systems is greatly enhanced by incorporating deep learning into an adaptive
control framework. The suggested approach delivers faster convergence, lower tracking error, and
better robustness under disturbances as compared to traditional MRAC and PID controllers. While
the flexible control structure guarantees closed-loop stability, the deep neural system efficiently
learns and adjusts for unknown nonlinear behaviour online.

All things considered, these findings support the efficacy of the suggested deep learning-
based adaptive flight control approach for managing uncertainties and nonlinearities in aerospace
systems.

Tracking Error Comparison
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Figure 3. Tracking Error Comparison

Figure 3, Comparing tracking errors under nominal flying circumstances for the nonlinear
aviation system. The suggested deep learning-based adaptive controller outperforms traditional
model of reference adaptive control (MRAC) as well PID controllers in compensating for nonlinear
as well uncertain flight dynamics, as evidenced by its quicker convergence and noticeably lower
steady-state tracking error.
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Robustness Analysis Under External Disturbance
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Figure 4. Robustness Analysis Under External Disturbance

Figure 4, Analysis of tracking performance's robustness in the face of outside disruptions.
While the MRAC as well PID controllers show increased oscillations along with performance
degradation, indicating the improved disturbance rejection capacity of the suggested approach, the
deep learning-based adaptable controller retains stable and precise tracking in the face of external
disturbances.

5. CONCLUSION

In order to overcome the shortcomings of traditional model-based adaptive controllers in
managing intricate nonlinearities and time-varying uncertainties, this research introduced a deep
learning-based adaptive flight control structure for nonlinear aerospace systems. The suggested
method allows online education and compensation of uncertain aerodynamic dynamics while
maintaining closed-loop stability by incorporating deep neural networks into a Lyapunov-stable
dynamic control structure. A systematic and adaptable framework that can be applied to a variety
of aerospace vehicles is provided by the nonlinear aircraft modelling, data-driven uncertainty
approximated, and adaptive control law formulation.

According to simulation results, the suggested controller outperforms traditional MRAC &
PID controllers in terms of tracking performance and resilience. Under varied operating conditions,
the deep learning-based adaptive controller demonstrated improved disturbance rejection,
decreased tracking error, and faster convergence. These results demonstrate the promise of
learning-based adaptive control techniques for intelligent flight management systems of the future.
Future research will concentrate on fault-tolerant and multi-axis flight control topologies,
experimental validation, and real-time implementation.
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