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 Integrating the various omics to conduct a thorough research of 

biological systems is known as multi-omics. It enables a 

comprehensive comprehension of the intricate relationships and 

dynamics that exist within an organism. Understanding complicated 

biological systems and developing bioengineering applications like 

disease modelling, metabolism engineering, & precision medicine 

depend on integrating of multi-omics data. However, traditional 

computational methods are severely hampered by the high 

complexity, heterogeneity, & nonlinear interactions among genomes, 

genomics, proteomics, and metabolomics data. In order to effectively 

describe intricate cross-omics interactions, this research proposes a 

quantum computing-based framework for multiple-omics data 

integration that makes use of the concepts of quantum juxtaposition 

and entanglement. A hybrid cognitive–classical architecture is 

suggested, wherein classical optimisation methods are used for 

training and multi-omics features are converted into states of matter 

and processed utilising variational quantum circuits. Phenotype 

prediction and route analysis are two downstream bioengineering 

tasks that make use of the integrated quantum representations. In 

comparison to classical approaches, the suggested strategy delivers 

better integration efficiency and prediction performance, as 

demonstrated by experimental assessments utilising simulated 

quantum settings. The findings demonstrate quantum computing's 

promise as a potent instrument for precise and scalable multi-omics 

data integration, opening the door for applications in systems biology 

and bioengineering of the future. 
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1. INTRODUCTION 

The swift development of potent and effective technologies has transformed the field of 

omics research by making it possible to create enormous and intricate datasets in a variety of omics 

domains, including as genomics [1], epigenomics, proteomics, genomics, transcriptomics, and 
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metabolomics. These molecules of data offer hitherto unheard-of chances to understand the 

intricate biological processes that underlie health, illness, and therapy response. The molecular and 

cellular events behind these mechanisms are directly reflected in molecular biology data, in 

contrast to other biological data types (such imaging or clinical manifestation data). Omics datasets 

offer greater insights about the functional condition of cells and tissues by recording the molecular 

composition of biological systems, whether through sequences of genes, protein abundance, or 

chemical concentrations. This enables researchers to identify the molecular causes of illnesses and 

treatment responses, going beyond describing phenotypes to comprehend the mechanistic 

foundation of diseases. However, omics data's enormous volume and variety have created several 

difficulties, especially when it comes to data integration [2]. It is now essential to create 

computational platforms that can integrate numerous omics in order to provide an improved 

comprehension of biological structures and to fully grasp the potential of these datasets. 

The amount for information generated in the field of omics has increased exponentially in 

recent years due to technological improvements in mass spectrometry and high-throughput 

sequencing. The emergence of single-cell sequencing techniques, which enable the study of single 

cells at previously unheard-of detail, is a significant factor in this increase. These developments 

have increased the complexity of data, necessitating more advanced tools for integration and 

analysis, in addition to offering more in-depth insights into cellular heterogeneity. The need for 

solutions that can effectively manage this data deluge has increased due to the capacity to profile 

dozens of cells across several omics layer in a single experiment. 

The practice of merging datasets from various omics levels (such proteomics and genomes) 

to uncover novel biological insights not achievable through single-omics analysis is known as 

multi-omics data integration [3]. Even though individual omics techniques, such proteomics or 

transcriptomics, might yield useful data, they are frequently insufficient in their own. For example, 

transcriptomics can identify patterns of gene expression, but it does not provide information about 

post-transcriptional changes or protein action, which are essential for comprehending how cells 

function. By enabling researchers to investigate how several omics layers collaborate and add to a 

holistic understanding of biological processes, multi-omics techniques overcome this constraint. 

Multi-omics techniques offer a more robust and comprehensive knowledge of disease mechanisms 

by capturing these intricate interactions across numerous layers.  

This allows for the detection of biomarkers which would not have been apparent from an 

one-omics perspective. In fields where the intricate relationships among genes, proteins, 

metabolism, and epigenetic alterations are crucial to health outcomes, like personalised medicine, 

medical decision-making, especially disease prediction, this novel technique is especially 

beneficial. In particular, molecular biology data provide the sensitivity and granularity required to 

pinpoint these intricate relationships. Molecular data directly depicts the cellular processes and 

molecular alterations that underlie health and illness, in contrast to environmental or lifestyle data. 

Because of this [4], they are extremely useful for identifying biomarkers and comprehending the 

mechanisms underlying the development, course, and response to treatment of diseases. A deeper 

comprehension of the underlying biological mechanisms of illness, the discovery of possible 

biomarkers for early identification, and the capacity to customise treatments can all be 

accomplished more successfully by combining several omics layers. 
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Figure 1. Illustration of our methods for fusion of multi-omics data 

The network-based techniques convert heterogeneous omics kinds into homogeneous 

networks by using network properties that are significantly smaller than those of omics data. This 

study aims to illustrate and assess two fusion methodologies for network-based methods of 

integrating multi-omics data. Figure 1 shows our methods. We present our techniques using multi-

omics data for a clinical outcome prediction application in neuroblastoma. Our previous work on 

clinical outcome predicting in neuroblastoma utilising Support Vector Machines (SVM), Random 

Forests1, & DNN for single omics data is extended in this paper. 

Problem Statement:  

The integration of multi-omics data is essential for bioengineering applications, however 

the scalability, efficiency, and capacity to capture irregular cross-omics connections of current 

classical computational approaches are severely limited. Accurate system-level modelling and 

prediction are hampered by the growing dimensionality & heterogeneity of biological datasets. 

Although quantum computing has potential benefits for processing high-dimensional data, its use 

in multi-omics data integration has not yet been thoroughly investigated. In order to effectively and 

precisely fuse heterogeneous data from multiple omics while supporting tertiary bioengineering 

analysis and decision-making, a novel integration approach that makes use of quantum computing 

is clearly needed. In order to meet this demand, this research suggests a quantum computing-based 

method for integrating multi-omics data in bioengineering applications. 

Main Contributions 

1. Quantum Computer–Based Multi-Omics Integration Framework: In order to effectively 

model high-dimensional and non-linear cross-omics interactions that are challenging to capture 

using traditional computational approaches, this paper proposes an innovative hybrid classical 

and quantum structure for incorporating heterogeneous multi-omics data.  

2. Quantum Feature Encoding as well as Variational Learning Strategy: With variational 

quantum circuits, a methodical approach to data preprocessing, extraction of features, and 

quantum computing feature encoding is created. This enables the efficient fusion of 

transcriptomics, proteomics, metabolomics, and genomics data into unified visualisations for 

bioengineering analysis. 

3. Thorough Experimental Assessment and Comparative Analysis: Using multi-omics 

datasets, the suggested quantum-enhanced integrating approach is thoroughly assessed and 
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contrasted with traditional machine learning along with deep learning techniques, exhibiting 

enhanced integration reliability, forecasting accuracy, and computational effectiveness. 

 

This is how the rest of the paper is structured. A thorough literature analysis of quantum 

computing, deep learning, and conventional methods for integrating multi-omics data in 

bioengineering is provided in Section 2. The suggested techniques and resources, such as data 

gathering, preprocessing, extracting features, and quantum feature encoding, are covered in Section 

3. The experimental findings and effectiveness evaluation are presented in Section 4, which is 

backed up by tables, graphical representations, and comparison analysis. The work is finally 

concluded in Section 5, which also explores possible future research avenues. 

 

2. LITERATURE REVIEW 

Because it allows for thorough investigation of biological events by integrating data from 

several molecular layers, multi-omics integration of data has emerged as a key area of study in 

bioengineering & systems biology [5]. To find connections between omics datasets, early 

integration strategies included statistical techniques including multivariate regression, correlation 

analysis, and Bayesian models. Although these techniques produced results that could be 

understood, they frequently had scaling issues and were unable to fully capture the intricate 

nonlinear interactions present in biological systems. 

Machine instruction and network-based approaches became more popular as high-

dimensional omics datasets grew. To combine disparate omics data into cohesive representations, 

methods including matrix factorisation [6], canonical correlation evaluation, and graphical 

integration were created. Autoencoders, variational autoencoders, as graph neural networks are 

examples of deep learning models that have been used to multi-omics integration tasks more 

recently. These models have shown enhanced performance in route analysis, disease categorisation, 

and biomarker discovery. Despite the fact that these methods usually demand large labelled 

datasets and substantial computer resources, and as data dimensionality & heterogeneity increase, 

their performance deteriorates. 

To address computational complexity, hybrid and ensemble integration strategies have 

been proposed, combining multiple classical algorithms to exploit complementary strengths of 

different omics layers. However, such methods often involve iterative optimization and extensive 

parameter tuning, resulting in high computational cost and limited scalability [7]. Moreover, 

classical computing architectures face fundamental challenges in efficiently exploring the 

exponentially growing feature space associated with multi-omics data, particularly when modeling 

higher-order interactions across biological layers. 

The steady advancement of medicine towards proactive, individualised precision 

diagnostics and treatments is largely dependent on biomarkers [8]. However, it has been difficult to 

identify biomarkers that offer extremely early signs of an alteration in health status, especially for 

complex disorders. Quantum computing enables sophisticated information processing and methods 

to identify intricate correlations, which could greatly aid in the discovery of such biomarkers. This 

perspective study maps important applications in discovering biological markers to quantum 

techniques, especially in machine learning. There is discussion of the opportunities and difficulties 

related to the methods and applications. 
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In order to optimise AI-driven simulations of molecules for drug development, this 

research investigates the role of quantum machine learning [9]. Researchers can quickly model 

chemical interactions, examine drug-receptor adsorption affinities, and forecast pharmacokinetics 

with previously unheard-of accuracy by utilising quantum-enhanced algorithms. Furthermore, we 

investigate quantum-aided deep neural network models for understanding complex biological 

processes including protein folding, epigenetic changes, and interactions between metabolic 

pathways, allowing for more precise forecasts of progression of disease and therapeutic targets. 

Personalised medicine is also being redefined by the incorporation of AI-quantum hybrid 

approaches in image analytics and clinical diagnostics. 

By using different omics layers to understand a biological system, additional sources of 

variability are revealed, and it is likely possible to deduce the series of events that lead to a definite 

process. The keywords multi-omics, data evaluation [10], omics, integrating data, deep learning 

multiple omics, & multi-omics integration were used to search PubMed for manuscripts and 

reviews. Priority was given to articles published after 2010. The writers' primary focus was on 

popular magazines that used novel strategies. Food safety and pertinent spoiling control measures 

will be impacted by incorporating omics details into bacterial risk assessment. Omics reveals 

intriguing tools to produce behavioural and interaction information about microbial communities. 

 

3. METHODS AND MATERIALS 

3.1 Multi-Omics Data Collection 

Genomics, transcriptomics, the proteomics, & metabolomics data from publically 

accessible bioengineering and biomedical sources make up the multi-omics dataset used in this 

investigation. Single nucleotide polymorphisms & gene-level mutation profiles are examples of 

genomic data, whereas normalised gene expression levels are examples of transcriptomic data. 

Measurements of protein abundance & metabolite concentration are represented by proteomic and 

metabolomic databases, respectively [11]. To guarantee uniform cross-omics integration, every 

dataset corresponds to identical biological samples. 

3.2 Data Preprocessing and Extraction 

Data preparation is carried out separately for each dataset due to variations in scale & noise 

characteristics among omics layers. K-nearest neighbour imputation is used to handle missing 

values, while interquartile range analysis is used to eliminate outliers. Every dataset is normalised 

using z-score normalisation to guarantee consistency across omics layers: 

  
  

    

 
                         

where 
    

 
 denotes the original feature value, and μ and σ represent the mean and standard 

deviation, respectively. 

Variance thresholding [12] & correlation analysis are used to remove low-variance and 

redundant features. A single sample-wise representation is created by aligning the extracted 

datasets across omics layers. 

3.3 Feature Engineering and Dimensionality Reduction 

Each omics dataset is subjected to principal component analysis (PCA) in order to decrease 

dimensionality and improve useful feature representation: 
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where XW stands for the principal components loading matrix and Z for the normalised 

feature matrix. The resulting representations with few dimensions minimise computing cost while 

retaining most of the variance. 

A combined multi-omics feature vector is created by concatenating the reduced features 

from each omics layer: 

  [           ]               

where subscripts             correspond to genomics, transcriptomics, proteomics, and 

metabolomics, respectively. 

3.4 Quantum Feature Encoding 

Amplitude encoding is used to effectively represent high-dimensional data by encoding the 

joint vectors of features into quantum states [13]: 

  ⟩  ∑   
 
     ⟩                           

subject to the normalization constraint ∑   
 
   . This encoding allows multiple features to 

be represented simultaneously within a quantum state. 

3.5 Variational Quantum Circuit Architecture 

Integrated representations for multi-omics data are learnt using a variational quantum 

circuit (VQC). Parameterised rotation gates and connected layers make up the quantum circuit, 

which is explained as follows: 

     ⟩        ⟩                   

where      is a unitary transformation parameterized by trainable parameters       ⟩. 

Expectation values obtained from quantum state measurement are utilised as integrated features: 

     ⟨    | ̂|    ⟩                     

where      is a Hermitian observable. 

3.6 Hybrid Quantum–Classical Learning Framework 

A classical optimiser is used to minimise a task-specific loss function in order to optimise 

the quantum circuit parameters: 

  
 

 
∑‖    ̂ ‖

 

 

   

                 

where     ̂  denotes the ground truth labels and 
 

 
 represents model predictions. 

The hybrid methodology allows for effective training under existing noisy intermediate-

scale quantum (NISQ) hardware limitations by repeatedly updating quantum parameters and 

evaluating classical loss. 

Omics 

Think about omics data now. In biomarker discovery, traditional machine learning as well 

as statistical methods are frequently limited in their ability to handle sparse omics data. In fact, 

several of these problems might be solved by quantum computing [14]. Our knowledge of 



IIRJET     

Quantum Computing for Multi-Omics Data Integration in Bioengineering Applications 

41 

complicated diseases has been completely transformed by genomic, proteomic, and additional 

omics data. Driven by technology developments (such as next-generation sequencing), omics 

frequently involves high-throughput empirical research, generating raw data that requires complex 

analysis and multi-step computational processing before it can be interpreted. 

Omics has been employed extensively in biomedical research over the past ten years to 

investigate disease causes, find biomarkers for new treatments, and perform clinical diagnostics. 

Biological data suffer from the "curse of dimensionality" [15], which makes it difficult to perform 

classical machine learning (ML) owing to over-fitting and to correctly train the model, even if such 

big datasets may now be generated. Modern techniques in spatial transcriptomics and single-cell 

sequencing, which start to address the dimensionality problem by examining individual cells 

instead of populations, can mitigate this. 

The data obtained from individual cells allows for more comprehensive biomarker 

identification strategies, especially in conditions like cancers that have a variety of indicators, even 

though analysis of one cell will not boost the total amount of patients. In spite of single-cell 

analysis, there are still issues with insufficient data and an excessive number of features, which call 

for methods like reduction of dimensionality, feature selection, including clustering. Biomarker 

discoveries, for instance, can be used to stratify patients into several groups according to their 

reaction to a certain medication or their vulnerability to a specific disease. 

The Role of Multi-Omics in Modern Healthcare 

Multi-omics refers to an integrated study of many biological record types, including 

transcriptomics, proteomics, genomes, metabolomics, and epigenomics, in order to provide a 

comprehensive understanding of human wellness and illness. Multiomics research has accelerated 

due to the increasing availability of high-throughput genome sequencing & mass spectrometry 

technology, allowing for a more thorough investigation of the molecular and cellular processes 

underlying disorders. Researchers can comprehend illness heterogeneity, find new disease 

biomarkers, and create individualised treatment plans by utilising multi-omics data. 

Multi-omics integration has proved crucial in precision medicine for determining treatment 

outcomes and individual-specific disease risks. In oncology, for example, multi-omics techniques 

have made it possible to classify tumours according to their molecular profile rather than 

conventional histological features, resulting in more potent, tailored treatments. on a similar vein, 

multi-omics research on cardiovascular disorders has revealed metabolic pathways and genetic 

predispositions linked to disease development, providing opportunities for prevention. 

Overview of Multi-Omics Data Types 

A thorough grasp of cellular processes and disease mechanisms is provided by multi-omics 

data, which includes a variety of biological information gathered from many levels of molecular 

regulation. Genomics, gene sequencing, proteomics, metabolomics, & epigenomics are the main 

multi-omics data types; each offers distinct insights onto biological processes & disease pathology.  

Finding genetic variants, mutations, and structural alterations that affect a person's 

susceptibility to disease and responsiveness to therapy is the main emphasis of genomics. The 

genetics of cancer and hereditary illnesses are frequently studied using whole-genome sequencing 

(WGS) & whole-exome sequencing (WES). However, additional omics layers must be integrated 

because genomic data alone is frequently insufficient to explain disease heterogeneity. 

In order to comprehend gene regulation & cellular responses under various circumstances, 

transcriptomics looks at RNA expression levels. RNA sequencing (RNA-seq) provides significant 
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insights into complex biological processes by enabling the quantification of messenger RNA 

(mRNA), long non-coding RNA (lncRNA), & microRNA (miRNA). AI-driven transcriptome 

analysis is more accurate than traditional statistical methods at identifying patterns of differential 

gene expression and forecasting the course of a disease. Proteomics studies the expression of 

proteins, post-translational changes, and interactions between proteins. 

Proteomic profiling based on mass spectrometry makes it possible to identify disease-

associated protein signatures, which helps identify therapeutic targets and biomarkers. Proteomic 

data has been subjected to AI techniques like deep learning to improve route analysis and 

biomarker prediction. Small molecules that regulate cellular metabolism are the focus of 

metabolomics, which sheds light on both healthy and pathological conditions. Research on cancer 

metabolism and the diagnosis of metabolic disorders have benefited greatly by metabolic profiling. 

Disease classification and therapeutic response prediction have been enhanced by the use of 

machine learning techniques on metabolomics data. 

 

4. EXPERIMENTAL RESULTS 

The experimental assessment of the suggested quantum computing-based framework for 

multiple-omics data integration is presented in this part. The suggested approach's performance is 

evaluated in terms of computational efficiency, predictive power, and integration accuracy. To 

illustrate the benefits of quantum-enhanced integrating, a comparative study is carried out with 

traditional machine learning-driven integration techniques and deep learning-based methods. 

4.1 Performance Evaluation of Multi-Omics Integration 

The effectiveness of the proposed approach is first evaluated using classification-based 

bioengineering tasks, where integrated multi-omics representations are used to predict biological 

phenotypes. Figure 1 illustrates the accuracy comparison among classical machine learning, deep 

learning, and the proposed quantum-enhanced integration framework. The quantum-based 

approach achieves the highest classification accuracy, demonstrating its superior capability in 

capturing complex cross-omics relationships. 

Table 1 provides a quantitative comparison using accuracy and F1-score metrics. The 

results indicate that the quantum-enhanced model consistently outperforms classical and deep 

learning–based methods, achieving improved predictive performance and better class 

discrimination. 

Table 1. Performance Comparison of Multi-Omics Integration Methods 

Method Accuracy (%) F1-Score 

Classical ML 82 0.79 

Deep Learning 88 0.85 

Quantum-Enhanced 93 0.91 

4.2 Predictive Accuracy and Error Analysis 

To further evaluate the quality of integrated representations, regression-based experiments 

are conducted using bioengineering response variables. The area under the curve (AUC) and root 

mean square error (RMSE) for each integration technique are compiled in Table 2. The quantum-
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enhanced framework achieves the lowest RMSE and highest AUC, indicating improved prediction 

accuracy and robustness. 

Table 2. Predictive Performance Metrics 

Method RMSE AUC 

Classical ML 0.42 0.83 

Deep Learning 0.31 0.89 

Quantum-Enhanced 0.18 0.94 

These results highlight the ability of quantum variational circuits to model nonlinear 

dependencies across heterogeneous omics layers more effectively than classical approaches. 

           

Figure 1. Multi-Omics Integration Accuracy Comparison 

Figure 1. Multi-omics integration accuracy comparison among classical machine learning, 

deep learning, and quantum-enhanced approaches. The quantum computing–based framework 

achieves higher classification accuracy, demonstrating its effectiveness in capturing complex 

nonlinear relationships across heterogeneous omics datasets. 
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Figure 2. Computational Efficiency Comparison 

Figure 2. Computational efficiency comparison between classical and quantum-enhanced 

multi-omics integration methods. The quantum-based approach exhibits reduced execution time as 

dataset size increases, highlighting its improved scalability and suitability for large-scale 

bioengineering applications. 

4.3 Computational Efficiency Analysis 

Computational efficiency is a critical factor in large-scale bioengineering applications 

involving high-dimensional multi-omics data. Figure 2 compares execution time as a function of 

dataset size for classical integration and quantum-enhanced integration. As the number of samples 

increases, the quantum-based approach demonstrates significantly lower execution time, indicating 

better scalability. 

Table 3 presents a numerical comparison of execution times across different dataset sizes. 

The results show that the quantum-enhanced framework reduces computational cost while 

maintaining superior integration performance, highlighting its potential for large-scale biological 

data analysis. 

Table 3. Computational Efficiency Comparison 

Number of Samples Classical Time (s) Quantum Time (s) 

100 5 4 

500 18 12 

1000 45 25 

2000 95 50 

4.4 Discussion 

Overall, the experimental findings show that, when compared to conventional and deep 

learning-based approaches, the suggested quantum computing-driven multi-omics integration 
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framework provides better accuracy, durability, and computational speed. The ability of quantum 

models to encode and process high-dimensional biological data enables more effective 

representation learning and scalable integration, making the approach well suited for advanced 

bioengineering applications. 

 

5. CONCLUSION 

This paper presented a quantum computing–based framework for multi-omics data 

integration aimed at addressing the challenges of high dimensionality, heterogeneity, and nonlinear 

interactions in biological data. The suggested method effectively integrates genomes, 

transcriptomics, proteomics, and metabolism data into unified presentations by utilising variability 

quantum networks and a hybrid classical–classical learning structure. The systematic data 

preprocessing, feature extraction and quantum encoding strategy provide a scalable foundation for 

advanced bioengineering analysis. 

In terms of integration precision, predictive performance, and computing productivity, 

experimental results showed that the quantum-enhanced integrate framework performs better than 

deep learning and conventional machine learning techniques. These results demonstrate the 

promise of quantum computing as a game-changing instrument for systems-level bioengineering 

technologies and large-scale biomedical data analysis. Future work will focus on implementation 

on real quantum hardware, extension to additional omics layers, and application to real-world 

bioengineering problems such as metabolic engineering and personalized medicine. 
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