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Environmental impacts can cause brace damage, cracking, loss of
stiffness, and other damage to buildings, bridges, and frame
structures. By identifying damage early on, Structural Health
Monitoring (SHM) technologies could avert catastrophic disasters.
Deep Learning (DL), which has advanced quickly in recent years, has
been used in SHM to efficiently extract features in order to identify,
locate, and assess various damages. However, traditional deep
learning approaches encounter difficulties with enormous amounts of
sensing data, computational expense, and scaling in large
infrastructure structures. This research introduces a quantum deep
learning (QDL) paradigm that takes advantage of the representational
and parallelism benefits of quantum computing for structural health
monitoring. The suggested method combines quantum feature
encoding, deep variational quantum circuits, and classical data from
sensors preprocessing for damage detection and architectural
condition evaluation. In order to improve feature learning
performance while lowering model complexity, a hybrid
fundamental—classical architecture is created in which quantum
layers are integrated into deep neural networks. Benchmark vibration
and strain datasets from viaduct and construction structures under
various damage scenarios are used to test the framework. According
to experimental findings, the suggested quantum deep neural network
model performs better than traditional deep learning techniques in
terms of computational efficiency, resistance to noise, and detection
accuracy. The results show that next-generation autonomous
monitoring systems for structural health in civil construction have a
promising future thanks to quantum deep learning.
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1. INTRODUCTION

Long-term exposure to environmental stresses, such as wind, earthquakes, automobiles,
environmental vibration, etc., can cause a variety of damages to building structures. As a result,
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there could be a significant loss of life or property as well as an influence on the building's overall
stability and safety. Because of this, SHM is essential to the facility, both as a whole and for its
essential elements. For instance [1], a healthy concrete construction must retain high strength and
excellent durability, which are directly correlated with the mortar's composition and ratio. The
structure's insecurity is reflected in the decline in strength and durability, therefore SHM must
assess the durability using vibration, tension and other factors.

The SHM uses structural characterisation and sensing technology to find alterations that
might point to deterioration or damage. The process of monitoring operating status, evaluating the
state, and identifying different kinds of structural deterioration is known as SHM. In conclusion,
SHM's main goal is to sense, identify, and measure structural operating conditions in order to
facilitate detection of damage and condition evaluation [2]. Damage Detection (DD), or the
identification, localisation, and evaluation of structural damage, is its key component. In the Rytter
investigation, damage detection was divided into four categories. (1) Detection: determining
whether harm is there. (2) Location: identifying the damage's location and coordinates. (3)
Assessment: determining how serious the damage is. (4) Repercussion: obtaining the structure's
real safety data in the identified state of damage. Data collection, system identification, condition
evaluation, and maintenance are the four essential components of SHM. The essential component
of SHM applications is the sensor & sensor data at the data acquisition stage. Both touch
(accelerometers, strain gauges, fibre optic sensors) and non-contact (high-speed cameras, drones,
and cellphones) sensors are used to collect the structure's operational status data. Appropriate data
processing techniques, such as machine learning (ML), deep learning (DL), and signal processing
techniques, are used based on the data to identify damage-sensitive features for condition
evaluation and damage identification. Lastly, appropriate actions are performed to preserve the
structure's service life and safety in accordance with the evaluation's findings.

Problem Statement

When handling high-dimensional, noisy, as well sparse sensor data that is frequently found
in real-world bridge and structure monitoring systems, existing monitoring of structural health
structures based on traditional deep learning are constrained by computation inefficiency,
scalability issues, and decreased robustness [3]. Successful learning frameworks that may
concurrently attain high damage detection precision, computational effectiveness, and resilience
under uncertainty are scarce. Furthermore, a thorough investigation of quantum deep learning's
capacity to overcome these constraints in civil infrastructure surveillance has not yet been
conducted.

Inspired by these difficulties, this research suggests a quantum deep learning-based system
for structural health monitoring that combines variational quantum circuits, quantum feature
encoding, and classical preprocessing. By increasing robustness, decreasing processing complexity,
and improving damage detection accuracy, the suggested method offers a feasible route towards
next-generation intelligent systems for monitoring for buildings and bridges.

Main Contributions

1. Quantum Deep- Learning Approach for SHM: In order to effectively learn from high-
dimension vibration & strain sensor data, this research suggests a novel hybrid quant—classical
deep learning system for tracking the structural health of bridges and buildings.

2. Quantum Feature Encoded and Variational Circuit Design: To improve resilience under
noisy monitoring settings and damage-sensitive feature representation, a methodical approach
for quantum data encoding and variations in quantum circuit-based deep learning is devised.
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3. Extensive Experimental Evaluation and Comparative Analysis: In comparison to
traditional deep learning models, the suggested method's superior detection of damages
accuracy, durability, and computational efficiency are demonstrated through extensive testing
on benchmark SHM datasets.

Paper Organization

This is how the rest of the paper is structured. In Section 2, relevant research on deep
learning, classical machine learning, and new quantum learning techniques for structural health
monitoring is reviewed. The suggested quantum deep learning framework, which includes data
collection, preprocessing, quantum feature encoder, and model construction, is presented in Section
3. The experimental setting and effectiveness assessment using Benchmarking Bridge and
constructing datasets are covered in Section 4. The findings and a comparison with traditional deep
learning techniques are covered in Section 5. The work is finally concluded and future research
possibilities are outlined in Section 6.

2. LITERATURE REVIEW

Over the past few decades, monitoring the health of structures has been thoroughly
investigated as a useful tool for evaluating the dependability and safety of civil infrastructure. In
order to identify structural deterioration, early SHM approaches mainly used physics-based models
including signal processing techniques [4] like modal analysis, response frequency functions, and
time-frequency methods. Although these techniques offered useful physical insight, their efficacy
was frequently constrained by modelling uncertainties, environment variability, and noise
sensitivity, especially in large-scale bridges and building structures.

Machine learning-based data-driven approaches were developed for SHM applications in
order to overcome these constraints. By identifying patterns directly from sensor data, traditional
machine learning methods [5] such as principal component analysis, k-nearest neighbours, support
vector machines, and decision trees have shown enhanced damage categorisation and anomaly
detection capabilities. However, when structural circumstances or operational environments
changed, these methods often required handcrafted characteristics and found it difficult to
generalise.

Deep learning's quick development allowed for automatic extraction of features from
unprocessed sensor measurements, which further revolutionised SHM research. While recurrent
neural network and long short-term recall model [6] were used to capture temporal correlations in
structural response signals, convolutional neural networks have been effectively applied to
vibration-related damage detection by transforming time-series information into image-like
representations. Although deep learning approaches have demonstrated better performance than
traditional machine learning techniques, their practical application in real-world SHM systems is
still difficult because of their high computational cost, massive data requirements, and inadequate
robustness to noise and missing data.

While vibration-based SHM may identify internal damage by extracting natural
frequencies, vibrations modes, and dampening ratios from vibration data [7], image-based SHM is
unable to do so. However, one-dimensional data must be transformed into two-dimensional data in
order to process vibration signals using 2D-CNN. In order to immediately process 1D data for
fracture detection, corrosion detection, various kinds of damage identification, anomalous data
detection, etc.,, One-Dimensional Convolutional Neural Networks (1D-CNN) with a
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straightforward design and low computational complexity are applied to SHM. Recurrent Neural
Networks (RNN) can recognise the temporal characteristics of data in addition to CNN.

The lack of data, however [8], is one of the primary issues here. Numerous approaches
have been explored to deal with this problem. Since quantum machine learning can be trained more
quickly and with less data, it would be a good choice for this. However, hybrid classical and
quantum deep learning techniques may be a substitute because, at this point, only a small humber
of qubits can be stable simultaneously. The advantage of adding a quantum layer to a traditional
deep learner for damage detection is examined in this work. This is accomplished by using acoustic
inspection data to anticipate corrosion in the blade of a wind turbine using a deep learning
algorithm both with and without an extra quantum layer.

Machine learning has received a lot of attention lately and is being developed as an
additional class of clever methods for civil structure health inspection. This analysis's primary goal
is to summarise the approaches developed over the past ten years for the application of machine
learning methods in civil engineering. Furthermore investigated are the kinds of sensors, the
quantity of sensors, the frequency of sampling, the kinds of structures, the materials of the
structures, the duration of data collection, and the kinds of stimulation in the domain [9]. First, a
synopsis of machine learning is provided, along with an illustration of its implications for structural
and civil engineering. The potential of ML techniques to address the shortcomings of traditional
methods is then discussed, along with applications of these techniques in the field.

Among the crucial techniques utilised to improve the functionality of building
infrastructure and tackle the complex issues of future cities are advanced sensing technologies. In
this work, we addressed the limitations of conventional sensors in four important areas of civil
engineering: transportation, energy, water, and construction. The possibility of quantum technology
to improve and transform the administration of construction infrastructures was then examined and
summarised. Improvements in water quality as [10] well as pressure monitoring in both sewage and
water infrastructures are anticipated for the water sector. Quantum sensors have the potential to
enhance grid stability, buildings' energy efficiency, and the integration of renewable energy
sources. The capacity to recognise beneath structures and subsurface density is the most promising
development in the construction industry. These sensors open up a lot of new possibilities for smart
mobility and real-time traffic control in the transportation industry.

Simultaneously, quantum computing has become an intriguing model for more effective
solutions to high-dimensional optimisation and learning issues than traditional approaches.
Variational quantum networks and quantum kernel [11] approaches are two examples of quantum
machine learning algorithms that have shown theoretical and experimental benefits in pattern
recognition, sorting, and optimisation applications. Quantum techniques for material discovery,
optimisation, and signal processing have been investigated in early engineering research,
demonstrating their capacity to handle complicated datasets.

Despite these developments, the use of quantum deep learning for structural health
monitoring is still relatively new. Previous research has mostly concentrated on conceptual
structures or small-scale modelling, with little investigation [12] of actual SHM datasets for
buildings and bridges. Furthermore, there is currently no comprehensive comparison of the
accuracy, resilience, and computational efficiency of quantum deep learning with traditional deep
learning techniques. The current study, which examines the efficacy of quantum deep learning for
tracking structural health and illustrates its potential benefits for future-proof intelligent civil
infrastructure systems, is motivated by this research gap.
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3. METHODS AND MATERIALS
3.1 Data Collection

Vibrating and strain measurements taken from instrumented bridges and building structures
make up the structural condition monitoring information used in this investigation. In order to
record dynamic structural reactions under ambient and operating loads, accelerometers & strain
gauges are placed at strategic points such mid-spans, joints and support areas. The sensor data is
recorded under various structural situations, such as undamaged and damaged states, and is
collected at a set sample frequency [13]. Stiffness decrease, mass variation, or localised structural
deterioration—all of which represent actual degradation processes in civil infrastructure—are used
to mimic damage situations.

3.2 Data Extraction and Preprocessing

To eliminate noise and environmental impacts, raw sensor readings are first preprocessed.
To get rid of high-frequency measurement noise and low-frequency drift, a band-pass filter is used.
To create several examples for learning, time-domain signals are subsequently divided into fixed-
length windows. To provide numerical stability and uniform scaling among sensors, each segment
is normalised. To preserve data continuity and accuracy, interpolation methods are used to deal
with missing or damaged sensor readings.

3.3 Feature Extraction

Both time-domain & frequency-domain features are taken from the preprocessed signals in
order to capture damage-prone characteristics. Each signal segment is used to compute common
statistical parameters including mean, variance, skewness, kurtosis, and root mean square (RMS).
The fast Fourier transform (FFT) [14] is used to acquire frequency-domain properties such as
frequency bandwidth, spectral energy, and dominating frequencies. In order to maintain temporal
variations in structural dynamics, time-frequency characteristics are also retrieved utilising the
short-time Fourier transform (STFT). A concise picture of structural behaviour under various
health situations is formed by these properties.

3.4 Quantum Feature Encoding

Amplitude & angle encoding methods are used to encode the retrieved feature vectors into
guantum states. Let's represent the traditional feature vector as

X = [Xq, Xg, ewv), X (1)
which is normalized and mapped to a quantum state |y) as
) = iz1xi D) )

Through quantum juxtaposition and entanglement, this encoding makes it possible to
effectively express high-dimensional structural features in a quantum Hilbert space, allowing for
improved feature interactions.

3.5 Quantum Deep Learning Architecture

For the purpose of classifying damage, a hybrid quantum—classical machine learning model
is created. Variational quantum circuits (VQCs), which function as quantum layers, come after
classical preprocessing layers in the design [15]. The stored quantum states are transformed by the
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quantum circuit's parameterised rotation gates & entangling operations. To make the ultimate
choice, the quantum circuit's output is measured & fed into fully connected classical layers. By
utilising quantum advantage in feature representation, this hybrid design allows for effective

training.

3.6Model Training and Optimization

A hybrid training approach is used to optimise the model parameters. While parameter-
shift rules are used to train quantum circuit parameters, gradient-based optimisation is used to
update classical parameters. The categorical correlation between the actual and expected structural
health states is known as the loss function. To avoid overfitting, training is conducted over several
epochs and early termination is used. The generalisation performance of the learnt model is
assessed using data that has not yet been observed.

Damage Classification in SHM
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Figure 1. Diagram of structural health monitoring systems areas

The assets that SHM monitors range from tiny parts to massive civil constructions and
intricate machinery, and it covers a number of application areas. In order to evaluate the existing
condition of the structure and, in certain situations, forecast how the building will react to future
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seismic excitations, building SHM systems concentrate on sensing shifts in the physical
parameters. The typical frequencies of the structures must be determined in order to make these
predictions. Because buildings are susceptible to dynamic as well as static loads, it is difficult to
provide a precise model that takes into account all of these existing and potential impacts due to the
complexities of the analysis. These regions of SHM systems, together with the associated
approaches, techniques, and algorithms, are depicted in Figure 1.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS
4.1 Implementation Details

A hybrid classical-classical learning environment is used to implement the suggested
qguantum deep learning framework. While guantum systems are constructed using a variational
computational framework run on a quantum simulator, classical processing, extraction of features,
and optimisation procedures are developed using scientific computing tools based on Python.
Amplitude encoding is used to convert vibration and strain characteristics taken from building and
bridge databases into quantum states. The quantum feature training module is a variational classical
circuit with entanglement layers and parameterised rotation gates. For the purpose of classifying
structural conditions, the quantum circuit's output measurements are combined with classical fully
linked layers. A hybrid gradient-based optimisation technique is used for model training, and
operations are repeated several times to guarantee consistency in the results.

4.2 Experimental Setup

Benchmark monitoring of structural health datasets that depict bridge and construction
structures under various damage scenarios are used in the experiments. A typical 70-15-15 split is
used to separate the datasets into testing, validation, and training sets. Convolutional neural
networks (CNNs), LSTM (long short-term memory) networks, and completely connected deep
neural networks (DNNs) are examples of traditional deep learning models that are contrasted with
the suggested quantum deep learning (QDL) model. Accurate damage detection, resilience to noise,
and computing efficiency are the main areas of performance evaluation.

4.3 Damage Detection Performance

The accuracy of damage identification attained by various learning models using the test
dataset is shown in Table 1.

Table 1. Damage Detection Accuracy Comparison

Model Accuracy (%) | Precision (%) | Recall (%)
DNN 91.4 90.8 89.9
CNN 93.1 92.6 92.0
LSTM 94.2 93.7 93.4
Proposed QDL | 96.8 96.2 95.9

The findings show that by successfully capturing intricate structural response patterns &
damage-sensitive features, the suggested quantum deep neural network model performs better than
traditional deep learning techniques.

4.4 Robustness under Measurement Noise
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Gaussian noise is introduced to the sensor signals at various signal-to-noise ratio (SNR)
values in order to assess robustness. Table 2 summarises the categorisation accuracy in noisy
environments.

Table 2. Model Robustness under Noisy Conditions

SNR (dB) [ DNN (%) | CNN (%) | LSTM (%) | QDL (%)
30 90.1 92.4 936 96.1
20 86.7 89.8 91.3 94.5
10 81.2 85.6 88.0 91.9

Even in the face of extreme noise contamination, the quantum deep computing model
exhibits improved robustness and maintains higher accuracy.

4.5 Computational Efficiency Analysis

Table 3 illustrates how each model's computational effectiveness is assessed in terms of
inference delay and training duration.

Table 3. Computational Efficiency Comparison

Model Training Time (s) | Inference Time (ms)
DNN 142 12.6
CNN 198 18.4
LSTM 231 21.7
Proposed QDL | 126 9.3

The suggested model delivers shorter training and inference durations despite using
quantum layers because of its effective feature representation and decreased parameter complexity.

4.6 Graphical Analysis
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Figure 2. Damage Detection Accuracy Comparison

The prediction precision of DNN, CNN, the LSTM, & the suggested QDL model are
contrasted in Figure 1. It demonstrates unequivocally how the Quantum Deep Learning (QDL)
models attains the maximum accuracy, confirming its superior learning capacity for SHM tasks.
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The model's performance at various signal-to-noise ratio (SNR) rates (10, 20, and 30 dB) is
shown in graph 2. When compared to traditional deep learning models, the QDL system
consistently retains superior accuracy in noisy environments, exhibiting improved robustness and
stability.

Computational Efficiency Comparison

200 A

150 +

100 -

Training Time (seconds)

50 -

DMN CMNN LSTM QDL
Models

Figure 4. Computational Efficiency Comparison

Figure 3 shows a comparison of training times for several models. The suggested QDL
model exhibits shorter training times despite adding quantum layers, demonstrating its
computational effectiveness and scalability for massive SHM systems.

4.7 Discussion

The experimental findings verify that quantum deep learning offers significant benefits for
tracking the structural health of buildings and bridges in terms of accuracy, durability, and
computational efficiency. Effective learning from dimensional sensor data is made possible by the
hybrid classical-quantum architecture, which also mitigates common drawbacks of traditional deep
learning techniques. These findings validate the potential of quantum deep learning as a viable
solution for next-generation intelligent infrastructure monitoring.

5. CONCLUSION

In order to address the main issues with high-dimensional data from sensors, computational
complexity, & robustness under noisy conditions of operation, this research proposed a quantum
deep learning-based framework for tracking the structural health of buildings and bridges. The
suggested hybrid quantum-—classical architecture successfully captures intricate structure response
patterns for damage identification and condition evaluation by fusing variational quantum circuits
with classical signal processing and feature extraction. The experimental findings show that the
suggested method performs better than traditional deep learning algorithms in terms of computing
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efficiency, robustness to measuring noise, and detection accuracy, underscoring its applicability for
intelligent building monitoring.

The results of this study show that, especially as sensing networks and information
guantities continue to expand, quantum deep learning offers a great deal of potential to improve
next-generation monitoring of structural health systems. Future work will concentrate on
deployment using actual quantum hardware, expansion to multi-damage localisation and severity
estimate, and integration with virtual twin frameworks for intelligent structure management, even if
the current solution depends on quantum simulation. The suggested strategy offers a viable basis
for utilising quantum computing technology in real-world civil engineering applications.
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