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 Environmental impacts can cause brace damage, cracking, loss of 

stiffness, and other damage to buildings, bridges, and frame 

structures. By identifying damage early on, Structural Health 

Monitoring (SHM) technologies could avert catastrophic disasters. 

Deep Learning (DL), which has advanced quickly in recent years, has 

been used in SHM to efficiently extract features in order to identify, 

locate, and assess various damages. However, traditional deep 

learning approaches encounter difficulties with enormous amounts of 

sensing data, computational expense, and scaling in large 

infrastructure structures. This research introduces a quantum deep 

learning (QDL) paradigm that takes advantage of the representational 

and parallelism benefits of quantum computing for structural health 

monitoring. The suggested method combines quantum feature 

encoding, deep variational quantum circuits, and classical data from 

sensors preprocessing for damage detection and architectural 

condition evaluation. In order to improve feature learning 

performance while lowering model complexity, a hybrid 

fundamental–classical architecture is created in which quantum 

layers are integrated into deep neural networks. Benchmark vibration 

and strain datasets from viaduct and construction structures under 

various damage scenarios are used to test the framework. According 

to experimental findings, the suggested quantum deep neural network 

model performs better than traditional deep learning techniques in 

terms of computational efficiency, resistance to noise, and detection 

accuracy. The results show that next-generation autonomous 

monitoring systems for structural health in civil construction have a 

promising future thanks to quantum deep learning. 

Keywords: 

Quantum deep learning 

Variational quantum circuits 

Structural health monitoring 

Vibration-based damage 

detection 

Hybrid quantum–classical 

learning 

 

Corresponding Author: 

Dr. Safa,
 

Assistant Professor, Department of Networking and Communications,  

SRM Institute of Science and Technology, India. 

 

1. INTRODUCTION 

Long-term exposure to environmental stresses, such as wind, earthquakes, automobiles, 

environmental vibration, etc., can cause a variety of damages to building structures. As a result, 
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there could be a significant loss of life or property as well as an influence on the building's overall 

stability and safety. Because of this, SHM is essential to the facility, both as a whole and for its 

essential elements. For instance [1], a healthy concrete construction must retain high strength and 

excellent durability, which are directly correlated with the mortar's composition and ratio. The 

structure's insecurity is reflected in the decline in strength and durability, therefore SHM must 

assess the durability using vibration, tension and other factors. 

The SHM uses structural characterisation and sensing technology to find alterations that 

might point to deterioration or damage. The process of monitoring operating status, evaluating the 

state, and identifying different kinds of structural deterioration is known as SHM. In conclusion, 

SHM's main goal is to sense, identify, and measure structural operating conditions in order to 

facilitate detection of damage and condition evaluation [2]. Damage Detection (DD), or the 

identification, localisation, and evaluation of structural damage, is its key component. In the Rytter 

investigation, damage detection was divided into four categories. (1) Detection: determining 

whether harm is there. (2) Location: identifying the damage's location and coordinates. (3) 

Assessment: determining how serious the damage is. (4) Repercussion: obtaining the structure's 

real safety data in the identified state of damage. Data collection, system identification, condition 

evaluation, and maintenance are the four essential components of SHM. The essential component 

of SHM applications is the sensor & sensor data at the data acquisition stage. Both touch 

(accelerometers, strain gauges, fibre optic sensors) and non-contact (high-speed cameras, drones, 

and cellphones) sensors are used to collect the structure's operational status data. Appropriate data 

processing techniques, such as machine learning (ML), deep learning (DL), and signal processing 

techniques, are used based on the data to identify damage-sensitive features for condition 

evaluation and damage identification. Lastly, appropriate actions are performed to preserve the 

structure's service life and safety in accordance with the evaluation's findings. 

Problem Statement 

When handling high-dimensional, noisy, as well sparse sensor data that is frequently found 

in real-world bridge and structure monitoring systems, existing monitoring of structural health 

structures based on traditional deep learning are constrained by computation inefficiency, 

scalability issues, and decreased robustness [3]. Successful learning frameworks that may 

concurrently attain high damage detection precision, computational effectiveness, and resilience 

under uncertainty are scarce. Furthermore, a thorough investigation of quantum deep learning's 

capacity to overcome these constraints in civil infrastructure surveillance has not yet been 

conducted. 

Inspired by these difficulties, this research suggests a quantum deep learning-based system 

for structural health monitoring that combines variational quantum circuits, quantum feature 

encoding, and classical preprocessing. By increasing robustness, decreasing processing complexity, 

and improving damage detection accuracy, the suggested method offers a feasible route towards 

next-generation intelligent systems for monitoring for buildings and bridges. 

Main Contributions 

1. Quantum Deep- Learning Approach for SHM: In order to effectively learn from high-

dimension vibration & strain sensor data, this research suggests a novel hybrid quant–classical 

deep learning system for tracking the structural health of bridges and buildings.  

2. Quantum Feature Encoded and Variational Circuit Design: To improve resilience under 

noisy monitoring settings and damage-sensitive feature representation, a methodical approach 

for quantum data encoding and variations in quantum circuit-based deep learning is devised.  
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3. Extensive Experimental Evaluation and Comparative Analysis: In comparison to 

traditional deep learning models, the suggested method's superior detection of damages 

accuracy, durability, and computational efficiency are demonstrated through extensive testing 

on benchmark SHM datasets. 

Paper Organization 

This is how the rest of the paper is structured. In Section 2, relevant research on deep 

learning, classical machine learning, and new quantum learning techniques for structural health 

monitoring is reviewed. The suggested quantum deep learning framework, which includes data 

collection, preprocessing, quantum feature encoder, and model construction, is presented in Section 

3. The experimental setting and effectiveness assessment using Benchmarking Bridge and 

constructing datasets are covered in Section 4. The findings and a comparison with traditional deep 

learning techniques are covered in Section 5. The work is finally concluded and future research 

possibilities are outlined in Section 6. 

 

2. LITERATURE REVIEW 

Over the past few decades, monitoring the health of structures has been thoroughly 

investigated as a useful tool for evaluating the dependability and safety of civil infrastructure. In 

order to identify structural deterioration, early SHM approaches mainly used physics-based models 

including signal processing techniques [4] like modal analysis, response frequency functions, and 

time-frequency methods. Although these techniques offered useful physical insight, their efficacy 

was frequently constrained by modelling uncertainties, environment variability, and noise 

sensitivity, especially in large-scale bridges and building structures. 

Machine learning-based data-driven approaches were developed for SHM applications in 

order to overcome these constraints. By identifying patterns directly from sensor data, traditional 

machine learning methods [5] such as principal component analysis, k-nearest neighbours, support 

vector machines, and decision trees have shown enhanced damage categorisation and anomaly 

detection capabilities. However, when structural circumstances or operational environments 

changed, these methods often required handcrafted characteristics and found it difficult to 

generalise. 

Deep learning's quick development allowed for automatic extraction of features from 

unprocessed sensor measurements, which further revolutionised SHM research. While recurrent 

neural network and long short-term recall model [6] were used to capture temporal correlations in 

structural response signals, convolutional neural networks have been effectively applied to 

vibration-related damage detection by transforming time-series information into image-like 

representations. Although deep learning approaches have demonstrated better performance than 

traditional machine learning techniques, their practical application in real-world SHM systems is 

still difficult because of their high computational cost, massive data requirements, and inadequate 

robustness to noise and missing data. 

While vibration-based SHM may identify internal damage by extracting natural 

frequencies, vibrations modes, and dampening ratios from vibration data [7], image-based SHM is 

unable to do so. However, one-dimensional data must be transformed into two-dimensional data in 

order to process vibration signals using 2D-CNN. In order to immediately process 1D data for 

fracture detection, corrosion detection, various kinds of damage identification, anomalous data 

detection, etc., One-Dimensional Convolutional Neural Networks (1D-CNN) with a 
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straightforward design and low computational complexity are applied to SHM. Recurrent Neural 

Networks (RNN) can recognise the temporal characteristics of data in addition to CNN. 

The lack of data, however [8], is one of the primary issues here. Numerous approaches 

have been explored to deal with this problem. Since quantum machine learning can be trained more 

quickly and with less data, it would be a good choice for this. However, hybrid classical and 

quantum deep learning techniques may be a substitute because, at this point, only a small number 

of qubits can be stable simultaneously. The advantage of adding a quantum layer to a traditional 

deep learner for damage detection is examined in this work. This is accomplished by using acoustic 

inspection data to anticipate corrosion in the blade of a wind turbine using a deep learning 

algorithm both with and without an extra quantum layer. 

Machine learning has received a lot of attention lately and is being developed as an 

additional class of clever methods for civil structure health inspection. This analysis's primary goal 

is to summarise the approaches developed over the past ten years for the application of machine 

learning methods in civil engineering. Furthermore investigated are the kinds of sensors, the 

quantity of sensors, the frequency of sampling, the kinds of structures, the materials of the 

structures, the duration of data collection, and the kinds of stimulation in the domain [9]. First, a 

synopsis of machine learning is provided, along with an illustration of its implications for structural 

and civil engineering. The potential of ML techniques to address the shortcomings of traditional 

methods is then discussed, along with applications of these techniques in the field. 

Among the crucial techniques utilised to improve the functionality of building 

infrastructure and tackle the complex issues of future cities are advanced sensing technologies. In 

this work, we addressed the limitations of conventional sensors in four important areas of civil 

engineering: transportation, energy, water, and construction. The possibility of quantum technology 

to improve and transform the administration of construction infrastructures was then examined and 

summarised. Improvements in water quality as [10] well as pressure monitoring in both sewage and 

water infrastructures are anticipated for the water sector. Quantum sensors have the potential to 

enhance grid stability, buildings' energy efficiency, and the integration of renewable energy 

sources. The capacity to recognise beneath structures and subsurface density is the most promising 

development in the construction industry. These sensors open up a lot of new possibilities for smart 

mobility and real-time traffic control in the transportation industry. 

Simultaneously, quantum computing has become an intriguing model for more effective 

solutions to high-dimensional optimisation and learning issues than traditional approaches. 

Variational quantum networks and quantum kernel [11] approaches are two examples of quantum 

machine learning algorithms that have shown theoretical and experimental benefits in pattern 

recognition, sorting, and optimisation applications. Quantum techniques for material discovery, 

optimisation, and signal processing have been investigated in early engineering research, 

demonstrating their capacity to handle complicated datasets. 

Despite these developments, the use of quantum deep learning for structural health 

monitoring is still relatively new. Previous research has mostly concentrated on conceptual 

structures or small-scale modelling, with little investigation [12] of actual SHM datasets for 

buildings and bridges. Furthermore, there is currently no comprehensive comparison of the 

accuracy, resilience, and computational efficiency of quantum deep learning with traditional deep 

learning techniques. The current study, which examines the efficacy of quantum deep learning for 

tracking structural health and illustrates its potential benefits for future-proof intelligent civil 

infrastructure systems, is motivated by this research gap. 
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3. METHODS AND MATERIALS 

3.1 Data Collection 

Vibrating and strain measurements taken from instrumented bridges and building structures 

make up the structural condition monitoring information used in this investigation. In order to 

record dynamic structural reactions under ambient and operating loads, accelerometers & strain 

gauges are placed at strategic points such mid-spans, joints and support areas. The sensor data is 

recorded under various structural situations, such as undamaged and damaged states, and is 

collected at a set sample frequency [13]. Stiffness decrease, mass variation, or localised structural 

deterioration—all of which represent actual degradation processes in civil infrastructure—are used 

to mimic damage situations. 

3.2 Data Extraction and Preprocessing 

To eliminate noise and environmental impacts, raw sensor readings are first preprocessed. 

To get rid of high-frequency measurement noise and low-frequency drift, a band-pass filter is used. 

To create several examples for learning, time-domain signals are subsequently divided into fixed-

length windows. To provide numerical stability and uniform scaling among sensors, each segment 

is normalised. To preserve data continuity and accuracy, interpolation methods are used to deal 

with missing or damaged sensor readings. 

3.3 Feature Extraction 

Both time-domain & frequency-domain features are taken from the preprocessed signals in 

order to capture damage-prone characteristics. Each signal segment is used to compute common 

statistical parameters including mean, variance, skewness, kurtosis, and root mean square (RMS). 

The fast Fourier transform (FFT) [14] is used to acquire frequency-domain properties such as 

frequency bandwidth, spectral energy, and dominating frequencies. In order to maintain temporal 

variations in structural dynamics, time-frequency characteristics are also retrieved utilising the 

short-time Fourier transform (STFT). A concise picture of structural behaviour under various 

health situations is formed by these properties. 

3.4 Quantum Feature Encoding 

Amplitude & angle encoding methods are used to encode the retrieved feature vectors into 

quantum states. Let's represent the traditional feature vector as 

  [          ]    (1) 

which is normalized and mapped to a quantum state ∣ψ⟩ as 

  ⟩  ∑   
 
     ⟩    (2) 

Through quantum juxtaposition and entanglement, this encoding makes it possible to 

effectively express high-dimensional structural features in a quantum Hilbert space, allowing for 

improved feature interactions. 

3.5 Quantum Deep Learning Architecture 

For the purpose of classifying damage, a hybrid quantum–classical machine learning model 

is created. Variational quantum circuits (VQCs), which function as quantum layers, come after 

classical preprocessing layers in the design [15]. The stored quantum states are transformed by the 
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quantum circuit's parameterised rotation gates & entangling operations. To make the ultimate 

choice, the quantum circuit's output is measured & fed into fully connected classical layers. By 

utilising quantum advantage in feature representation, this hybrid design allows for effective 

training. 

3.6 Model Training and Optimization 

A hybrid training approach is used to optimise the model parameters. While parameter-

shift rules are used to train quantum circuit parameters, gradient-based optimisation is used to 

update classical parameters. The categorical correlation between the actual and expected structural 

health states is known as the loss function. To avoid overfitting, training is conducted over several 

epochs and early termination is used. The generalisation performance of the learnt model is 

assessed using data that has not yet been observed. 

Damage Classification in SHM 

 

Figure 1. Diagram of structural health monitoring systems areas 

The assets that SHM monitors range from tiny parts to massive civil constructions and 

intricate machinery, and it covers a number of application areas. In order to evaluate the existing 

condition of the structure and, in certain situations, forecast how the building will react to future 
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seismic excitations, building SHM systems concentrate on sensing shifts in the physical 

parameters. The typical frequencies of the structures must be determined in order to make these 

predictions. Because buildings are susceptible to dynamic as well as static loads, it is difficult to 

provide a precise model that takes into account all of these existing and potential impacts due to the 

complexities of the analysis. These regions of SHM systems, together with the associated 

approaches, techniques, and algorithms, are depicted in Figure 1. 

 

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

4.1 Implementation Details 

A hybrid classical–classical learning environment is used to implement the suggested 

quantum deep learning framework. While quantum systems are constructed using a variational 

computational framework run on a quantum simulator, classical processing, extraction of features, 

and optimisation procedures are developed using scientific computing tools based on Python. 

Amplitude encoding is used to convert vibration and strain characteristics taken from building and 

bridge databases into quantum states. The quantum feature training module is a variational classical 

circuit with entanglement layers and parameterised rotation gates. For the purpose of classifying 

structural conditions, the quantum circuit's output measurements are combined with classical fully 

linked layers. A hybrid gradient-based optimisation technique is used for model training, and 

operations are repeated several times to guarantee consistency in the results. 

4.2 Experimental Setup 

Benchmark monitoring of structural health datasets that depict bridge and construction 

structures under various damage scenarios are used in the experiments. A typical 70–15–15 split is 

used to separate the datasets into testing, validation, and training sets. Convolutional neural 

networks (CNNs), LSTM (long short-term memory) networks, and completely connected deep 

neural networks (DNNs) are examples of traditional deep learning models that are contrasted with 

the suggested quantum deep learning (QDL) model. Accurate damage detection, resilience to noise, 

and computing efficiency are the main areas of performance evaluation. 

4.3 Damage Detection Performance 

The accuracy of damage identification attained by various learning models using the test 

dataset is shown in Table 1. 

Table 1. Damage Detection Accuracy Comparison 

Model Accuracy (%) Precision (%) Recall (%) 

DNN 91.4 90.8 89.9 

CNN 93.1 92.6 92.0 

LSTM 94.2 93.7 93.4 

Proposed QDL 96.8 96.2 95.9 

 

The findings show that by successfully capturing intricate structural response patterns & 

damage-sensitive features, the suggested quantum deep neural network model performs better than 

traditional deep learning techniques. 

4.4 Robustness under Measurement Noise 
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Gaussian noise is introduced to the sensor signals at various signal-to-noise ratio (SNR) 

values in order to assess robustness. Table 2 summarises the categorisation accuracy in noisy 

environments. 

Table 2. Model Robustness under Noisy Conditions 

SNR (dB) DNN (%) CNN (%) LSTM (%) QDL (%) 

30 90.1 92.4 93.6 96.1 

20 86.7 89.8 91.3 94.5 

10 81.2 85.6 88.0 91.9 

 

Even in the face of extreme noise contamination, the quantum deep computing model 

exhibits improved robustness and maintains higher accuracy. 

4.5 Computational Efficiency Analysis 

Table 3 illustrates how each model's computational effectiveness is assessed in terms of 

inference delay and training duration. 

Table 3. Computational Efficiency Comparison 

Model Training Time (s) Inference Time (ms) 

DNN 142 12.6 

CNN 198 18.4 

LSTM 231 21.7 

Proposed QDL 126 9.3 

 

The suggested model delivers shorter training and inference durations despite using 

quantum layers because of its effective feature representation and decreased parameter complexity. 

4.6 Graphical Analysis 
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Figure 2. Damage Detection Accuracy Comparison 

The prediction precision of DNN, CNN, the LSTM, & the suggested QDL model are 

contrasted in Figure 1. It demonstrates unequivocally how the Quantum Deep Learning (QDL) 

models attains the maximum accuracy, confirming its superior learning capacity for SHM tasks. 

               

Figure 3. Robustness Analysis under Noise 
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The model's performance at various signal-to-noise ratio (SNR) rates (10, 20, and 30 dB) is 

shown in graph 2. When compared to traditional deep learning models, the QDL system 

consistently retains superior accuracy in noisy environments, exhibiting improved robustness and 

stability. 

           

Figure 4. Computational Efficiency Comparison 

Figure 3 shows a comparison of training times for several models. The suggested QDL 

model exhibits shorter training times despite adding quantum layers, demonstrating its 

computational effectiveness and scalability for massive SHM systems. 

4.7 Discussion 

The experimental findings verify that quantum deep learning offers significant benefits for 

tracking the structural health of buildings and bridges in terms of accuracy, durability, and 

computational efficiency. Effective learning from dimensional sensor data is made possible by the 

hybrid classical–quantum architecture, which also mitigates common drawbacks of traditional deep 

learning techniques. These findings validate the potential of quantum deep learning as a viable 

solution for next-generation intelligent infrastructure monitoring. 

 

5. CONCLUSION 

In order to address the main issues with high-dimensional data from sensors, computational 

complexity, & robustness under noisy conditions of operation, this research proposed a quantum 

deep learning-based framework for tracking the structural health of buildings and bridges. The 

suggested hybrid quantum–classical architecture successfully captures intricate structure response 

patterns for damage identification and condition evaluation by fusing variational quantum circuits 

with classical signal processing and feature extraction. The experimental findings show that the 

suggested method performs better than traditional deep learning algorithms in terms of computing 
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efficiency, robustness to measuring noise, and detection accuracy, underscoring its applicability for 

intelligent building monitoring. 

The results of this study show that, especially as sensing networks and information 

quantities continue to expand, quantum deep learning offers a great deal of potential to improve 

next-generation monitoring of structural health systems. Future work will concentrate on 

deployment using actual quantum hardware, expansion to multi-damage localisation and severity 

estimate, and integration with virtual twin frameworks for intelligent structure management, even if 

the current solution depends on quantum simulation. The suggested strategy offers a viable basis 

for utilising quantum computing technology in real-world civil engineering applications. 
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